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ABSTRACT

A detailed study was conducted in order to develop rational methods
to predict structural fatigue life of laminated expulsion bladders. The
technical approach was to first compute plastic strains in typical single
and double folds of bladder materials, and then relate these strains to
experimental fatigue data in order to predict cyclic operating life of
the bladder. A computer program, based upon the "finite element' method
of continuum mechanics, was written for calculating the folding strains.
The single fold was simulated by a plane strain model, whereas the
double fold required an axisymmetric model. The program includes many
features which should facilitate its use by a bladder design engineer,
and output includes the prediction of fatigue life as well as a detailed
printout of strains and stresses in the bladder model. The theory on
which the computer program is based differs from others which also attack
highly nonlinear static structural response in that the present theory
allows a check on solution accuracy. This theory represents a significant

contribution to the state-of-the-art in solid mechanics.
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I. INTRODUCTION AND BACKGROUND

The supply of liquid propellants to the rocket engine is one problem
that arises in spacecraft design. The propellants must be supplied in con-
trolled amounts, and they must be free from gas or vapor bubbles, since
bubbles can lead to rough burning or failure of the engine. One method of
- supplying vapor-free propellants in a zero-gravity environment is to use
some form of a positive expulsion device. Although various expulsion
devices have been proposed, the most successful approach to date has been
to employ a flexible bladder in each propellant tank. By supplying gas
pressure to the exterior of the bladder, the liquid propellant is forced

out of its container and delivered to the engine.

The expulsion bladders must function properly for a successful firing
of the engine. However, when the propellant is expelled, the bladder
develops folds, creases, and wrinkles that can crack or tear the material
and thereby result in a mechanical failure of the bladder. In most cases,
a bladder does not fail the first time it is employed, but, the bladder is
subjected to several expulsion cycles (during ground operations and check-

out of the spacecraft), and it is then required to perform in flight. Thus

a major problem in the design of bladders is to avoid low cycle fatigue

failure of the bladder matefial.

One solution to this fatigue problem is to make the bladder out of a
material such as rubber, which can withstand the high strains that occur
during folding when the propellant is expelled. Rubber-like bladders give
rise to other problems, however, since they tend to have a high permeabil-
ity (gases and liquids diffuse through them), and they often react chemi-
cally with the propellants.

The problems of fatigue failures, permeability, and chemical compati-
bility have led to the application of composite materials for bladders.
For example, a composite, laminated bladder may have outer layers made of
teflon or mylar (to avoid reaction with propellants) and an inner layer of
metal foil (which provides a diffusion barrier). Elastomer layers may also
be used, to provide the composite with greater flexibility. Naturally, the

question which then arises is how to select the materials and the
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thicknesses of the wvarious laminates to obtain the best overall bladder

performance and maximum life expectancy.

In response to the problem of composite bladder design, the objéctive
of this study is to conduct an analytical program for improving the per-
formance, efficiency, and operating life (i.e., recycling capability) of
these propellant expulsion devices. Experience indicates that the majority
of bladder failures are associated with regions of high strain that occur
either when the bladder folds and wrinkles as the propellant is expelled or
during vibration when sloshing occurs. Typical folds and creases that a
bladder undergoes are illustrated in Figure 1-1; the various folds can be
roughly classified as: a) simple folds, or b) double folds. These folds
can occur in various combinations, which result in three-corner folds,
creases, wrinkles, and points. A particularly severe fold which fre-
quently occurs is the traveling crease, or a rolling double fold. Such

traveling folds motivated the design of the J.P.lL. crease tester.

To achieve the program objective (e.g., to improve bladder performance
and fatigue life), the present study will be devoted to: a) obtaining the
low-cycle fatigue life of bladders fabricated from composite materials; and
b) obtaining a better understanding of the principal parameters that effect
"bladder life expectancy. To determine the fatigue life of composite blad-
ders, an analysis of the strain in simple and double folds for composite
bladders will bé conducted. From those strains, the fatigue life of the

bladder will be predicted.

Since material properﬁies, thicknesses, and fabrication techniques
introduce statistical variations into the fatigue problem, it is recognized
that the approach just outlined may exhibit a large variance about some
estimated mean fatigue life. However, it is our strong conviction that
such an approach will correctly portray the ordering of the life expectan-
cies of the various composites; that is, the analysis will indicate which
arrangements of laminate materials and thicknesses result in maximum
fatigue life. Hence, it is felt that agreement between the calculated per-
formance and the experimental fatigue life of actual bladders will defi-
nitely be obtained. Thus, the analytical model will provide the Propulsion

Engineer with a rational means of designing bladders.
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a. Simple Fold

PRIMARY SIMPLE FOLD RADIUS

b. Double Fold
SECONDARY FOLD RADIUS

PRIMARY FOLD

' ' PRIMARY FOLD RADIUS

Figure 1-1. Simple and Double Folds

1.1 Project Plan

During the first month of this project, a project plan was formulated
which defined various tasks and sub-tasks. This plan is shown in Table 1-1.
Since the project plan was closely followed during this contract, this final

report will be organized according to the tasks given in Table 1-1.



1.0

2.0

3.0

4.0

5.0

TABLE 1-1. Project Plan

Tasks

Literature Survey and Review

Collect data on material properties and fatigue

life

Analysis of Simple Folds

2.1
2.2

2.3
2.4

2.5

2.6

Formulate and program an ''m-layered" model
Formulate and program a two-dimensional
finite element model

Conduct experiments on simple folds
Compare theory and experiment;

Refine the analysis

Investigate the influence of traveling

and rolling

Estimate fatigue life of simple folds

Analysis of Double Folds

3.1

3.2
3.3

3'4

3.5

Formulate and program an axisymmetric
finite element model

Conduct experiments on double folds
Compare theory and experiment;

refine the analysis

Investigate the influence of traveling
and rolling

Estimate fatigue life of double folds

Computer Program

Prepare and document a computer program based

upon the finite element model(s).

Final Report



I1. TASK 1.0: LITERATURE SURVEY AND REVIEW

In this section, the following three questions are answered: 1)
What type of bladder folding fatigue test makes sense?; 2) How can single
and double fold fatigue tests be related to uniaxial test data?; 3) What
fatigue results are available for bladder materials? Answers to these
questions presented here are based upon study of the collected literature
to date. It is possible that further investigation of additional references

could modify these points of view.

I1.1 Fatigue Test Modes

IT.1.1 Repeated Straining and Reversed Straining

Since the operation life of a bladder depends on the low-cycle
fatigue property of the material and low-cycle fatigue behavior is governed
by the plastic strain range of each cycle, it is only necessary to consider
whether it is desirable to conduct bladder folding fatigue tests as "repeated

straining" tests or "reversed straining" tests.

As an example of the repeated straining test, Evans (Ref. 1) applied
repeated constant increments of longitudinal tensile strains (with plastic
strains ranging from zero to eP) to copper and mi}d steel wires and obtained
the results (Ref.2)

N = ef/ep (2.1)
where N = number of cycles to failure
€ = fracture strain
€ = plastic strain

As an example of the reversed straining test, Coffin and Tavernelli
(Ref. 3) applied cyclic strains between maximum tensile strain of +ep/2
and maximum compressive strain of -& /2 to their metal specimens (with

total plastic strain range of eP in each cycle) and obtained the results



2)

constant = C (2.2a)

aQ
1]

egl2 (2.2b)
From study of experimental data, treated as a problem of cumulative fatigue

damage, Martin (Ref. 4), found that
Cc = sf/ V2 (2.3)

gave a better fit. Substituting Eq. (2.3) into Eq. (2.2a) gives

_1 ff2
N =3 (Ep) (2.4)

for reversed straining tests.

The results from Eqs; (2.1) and (2.4) agree only if eflep = 2,
which means the applied plastic strain range ep is as high as half of the
fracture strain g For other reasonable strain ranges (which are much
lower than ef) more cycles of life are obtained with the reversed strain-
ing test than the repeated straining test. For example, if ef/ep = 10,
Eq. (2.1) gives N = 10 cycles for repeated straining, while according to

Eq. (2.4), N = 50 cycles for reversed straining.

It is explained in Ref. 5 that during the compressive straining part
of the cycle in reversed straining tests some re-welding of the micro-
cracks occurs. The current state of understanding of low-cycle fatigue
of metals is that microcracks often exist inside the test specimen.

Even if they do not exist initially, they begin to form after only a

very small number of cycles of straining at sites of microscopic inhomogeneity
(crystal boundaries, dislocations, or inclusions). Further straining

causes these microcracks to grow. In repeated straining, they grow without
any chance of re-welding. 1In reversed straining, some re-welding is

possible (although re-welding does not restore the material). Hence,

reversed straining yields more life cycles than repeated straining does

at the same level of strain range ep per cycle. (For this comparison the
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maximum tensile strain in reversed straining test +sp/2 is half of that

in repeated straining test, + sp).

11.1.2 Effects of Mean Strains

Perhaps a better explanation from the point of view of (macroscopic)
continuum mechanics is the observation presented in Ref. 6 (p. 171) that
in reversed straining the mean strain is zero, whereas in repeated strain-
ing the mean strain § is a tensile strain. In repeated straining tests,
the material can be regarded as 1) first being given a mean strain of §
and then 2) being subjected to a cyclic plastic-strain range of ep with
zero mean strain (as in the case of reversed straining). Since the effect
of the mean strain or "prestrain' is to reduce the life cycles, we get
less cycles to failure in repeated straining than in reversed straining

at the same level of strain range €_.

For example, one of the approximate formulas for life cycles, in-

cluding the effect of the mean strain § is (Ref. 6, p. 174)

2
N = (—-——]:_6) (2.5)
P
where D = tensile ductility
Ab
= log — = -log (1-R.A.) (2.6)
Af

in which R.A. is the conventional "reduction in area" and A0 and A_. are

the initial and final areas of the fracture cross section in the thsile
test. In fact D is the "fracture strain' ¢ used in Eqs. (2.1) and (2.4).
As long as § is positive (tensile strain), its effect is to reduce the life
cycle N. The effect is more substantial in the range where the ratio

D/sp is small (hence life cycle N is small) than in the range of high

values of D/ep and N.

11.1.3 Preferable Fatigue Test Mode

In folding and unfolding of simple and double folds in a bladder in
real life applications, a situation between reversed straining and re-
peated straining prevails. In some locations the maximum tensile strains

will be reversed to compressive strains which rarely reach the same
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magnitude as the maximum tensile strains (or vice versa). In other
locations the lowest strains will remain to be tensile (or compressive).
Since repeated straining yields smaller life cycles than reversed strain-
ing, it is more conservative (hence preferable) to conduct bladder folding

fatigue test as the repeated straining type. On the other hand, if tests

are to be conducted to obtain uniaxial fatigue data it is preferable to
use the reversed straining type since this type of loading gives nearly
‘straight line relations between Ep and N on log-log coordinates and test
results can be readily compared with available data which are mostly of
reversed straining type. Should the tests be conducted as the reversed
straining type, the resulting life cycles N must be divided by a factor
of safety (greater than one) to account for shorter life in case of repeat-
ed straining.

I1.2 TUse of Uniaxial Test Data to Interpret Results from Multiaxial
Fatigue Tests

II1.2.1 A General Procedure of Life Prediction Considering Both Plastic
and Elastic Strains

Whether the stress applied to a test specimen is uniaxial or multi-
axial, the resulting total strain (containing both elastic and plastic
components) will be triaxial. Thus, simple and double fold fatigue tests
1’ €2 and €qe
In order to predict fatigue life of the specimen with the three components

will provide a continuous record of the principal strains ¢

of total strains specified throughout a cycle by available uniaxial fatigue
test data, Manson (Ref. 6, p. 169) hypothesized a general procedure which

consists of the following steps:

1I.2.1.1 Plot Uniaxial Relation between Plastic-Strain Range and Cycle
Life

If a plot is made on logarithmic coordinates of the plastic-strain
range Ep versus the number of cycles to failure N in a uniaxial reversed
straining test, the result is very nearly a straight line given by the

equation

€ = MN (2.7)
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where M and z are material constants. These constants can be either
determined by direct measurements from uniaxial fatigue tests (Ref. 6,
p.143) or computed by approximate formulas (Ref. 6, pp. 159-161) in terms

of various combinations of endurance limit O (from uniaxial fatigue

nd
tests), tensile ductibility D, ultimate tensile strength ou or/and

fracture stress o¢ (all from uniaxial static tests).

IT.2.1.2 Plot Uniaxial Relation between Elastic-Strain Range and Cyclic
Life

If the stress range at the half-life (the "asymptotic stress range',
as defined in Ref. 6, p. 128) is divided by the elastic modulus E, the
quotient can be regarded as the elastic-strain range €as associated with
the cyclic life N. A plot of this strain versus cyclic life on log-log

coordinates also results in a reasonably straight line given by

G .Y , 6

= — < .
€ag = E N (valid for N < 10) (2.8)
where G and y are material constants. Again these constants can be either
determined by direct measurements from uniaxial fatigue tests (Ref. 6,
p. 143) or computed by approximate formulas (Ref. 6, pp. 159-161) in terms
of various combinations of ¢ £
IT1.2.1.3 Plot Triaxial Relation between Total Equivalent Strain Range

and Cyclic Life

o _and ¢
end’ “u

It is shown in Ref. 6 that through the hypothesis of an "equivalent

total strain range' Ae given by

Ae = /i: \[[A(el—zaz)]2 + [A(€2—€3)]2 + [A(e3-el)]2 (2.9)
the equation

Ae

]

m
—+
wN
~
K
=
N’
m

]
+
4
3
é—(

(2.10)

relates the triaxial strain ranges to cyclic life prediction based on

uniaxial data given by the material constants M, z, G and y. Here u is
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the Poisson's ratio of the material.

Equation (2.10) can be plotted as a strain range Aec versus cyclic
life N curve on log-log coordinates and can be used for cyclic life pre-

diction for the material.

II.2.1.4 Compute Total Equivalent Strain Range for Given Triaxial Problem

For any problem in which the three principal total strain components
(plastic and elastic strains) are specified either from measurement or
1~ €95 €9 T €45 €5 ~ 81 for
the entire load cycle and note the ranges traversed by these strain differ-

computation, form the strain différences ¢

ences. Substitute these strain difference ranges A(sl - 82), A(e2 - 83),

A(s3 - el) into Eq. (2.9) to obtain an equivalent total strain range Ae of
the given problem.

I1.2.1.5 Find Cyclic Life From the Curve Eq. (2.10)

Read off the value of N from the curve constructed in step I1I.2.1.3
(according to Eq. (2.10))corresponding to the value of Ac obtained in step

IT1.2.1.4. This is the life prediction for the given problem.

It is clear then, that the procedure described above allows comparison
of the cyclic life from simple and double fold fatigue tests with that
predicted by uniaxial fatigue or/and static test data. It also allows
prediction of cyclic life for any problem where the triaxial total strains

are specified for the entire load cycle.

11.2.2 Simplified Procedure of Life Prediction Neglecting Elastic Strains

A typical Ac vs. N curve (according to Eq. (2.10))shows that in the
low life range, the elastic component is almost negligible as compared
with the plastic component. In this range the total strain Ae almost
coincides completely with the ep vs. N straight line for the plastic com~-
ponent (according to Eq. (2.7)). At the higher cyclic lives, however,
the plastic strain rapidly becomes negligible, while the elastic strain
retains a relatively high value because of the lower slope of the
%-(l+u)€ez vs. N straight line with €a given by Eq. (2.8). Thus, the
Ae curve approaches tangency to the elastic line. The crossover point
4

between the two curves is, for most materials, in the vicinity of 10

cycles. Thus, if life ranges of less than 1,000 cycles are involved, it
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is usually permissible to neglect consideration of the elastic component.

On the other hand, if the problem involves lives in the vicinity of 100,000
cycles, the strain of major interest is the elastic-strain range (or,
equivalently, the stress range). Basically it is probably still localized
plastic flow that induces fatigue, even at the very high lives, but
measurement of the plastic flow is difficult and the stress range apparently

becomes an adequate measure of this localized plastic flow.

For bladder folding applications, the situation is well within the
low life (and high strain) range. The elastic strains may be neglected
(as compared with the plastic st;ains) for most practical purposes. Then
the procedure of life prediction presented in II.2.1 can be simplified

as follows:

I1.2.2.1 Plot Unjiaxial Relation Between Plastic Strain Range and Cycle Life

This step is same as in Step II1.2.1.1. For the straight line
Ae = ¢ = MN (2.7)

the material constants M and z can be either determined by direct measure-
ments or by one of the following three sets of approximate formulas
(Ref. 6, pp. 159-161).

I1.2.2.1.1 Relation Involving Ductibility D

According to Tavernelli and Coffin (Ref. 7)

D/2

=
i

(2.11)

~1/2

N
1l

These values of M and z give consistently conservative values for life
cycle N. According to Martin (Ref. 4), a better fit to experimental data
can be obtained by taking

=
1l

D/V2
(2.12)
-1/2

N
il
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11.2.2.1.2 Relation Involving Ductibility D, Ultimate Tensile Strength
9, and Fracture Stress O

o \/¢ 0.179]-1/3
0.827Dj1-82f — —)
E ou
- (2.13)
3 s\ f0.\0.179
1 1 —aof v} _£
-0.52 - 4 log D + 3 log |1 82(E )(Ou) ]

These values of M and z give better fit to experimental data than Eqs.(2.11)

=
i

N
]

but may be too unconservative. Manson (Ref. 6, p. 164) suggested division
of M by approximately 1.5 to make Eq. (2.13) render predominantly conser-

vative life predictions.

IT.2 2.1.3 Relation Involving Ductibility D, Fracture Stress Of and
Endurance Limit Send

o o] 0.394] -1/3
0.827D|1-166{ 224 }(—E-
E o
end
o o 0.394
~0.52 - L 1og D + = 1og |1-166(—24}{——
4 3 E o
end

The prediction based upon these values of M and z yields slightly improved

=
]

(2.14)

N
]

correlations with experimental data than 17.2.2.1.2 at the higher cyclic
lives. This is to be expected since use is essentially made of the long-
life data in establishing the endurance limit at 107 cycles., For applica-
tion to low-cycle fatigue of bladder folding this refinement is not

necessary.

Egqs. (2.11), (2.12) and (2.13) show that it is possible to approxi-
mately derive uniaxial fatigue data from uniaxial static test data (D,

e of) only.

11.2.2.2 Compute Equivalent Plastic Strain Range for Given Triaxial Problem

This step is same as Step II.2.1.4 except that the total strain
range Ac is assumed to be equal to the plastic strain range ep. The

equivalent plastic strain range Ae = ep is given by Eq. (2.9).
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1T1.2.2.3 Find Cyclic Life from the Straight Line Eq. (2.7)

Read off the value of N from the straight line constructed in step
IT1.2.2,1 (according to Eq. (2.7))corresponding to the value of Ae obtained
in Step II.2.2.2. This is the desired life prediction for the given

§

problem.

11.2.3 Limjitations of Procedure for Multiaxial Strains

When Eq. (2.9) is applied to determine an equivalent total strain
range, the implicit assumption is made that deformation plasticity is
valid. It is essentially assumed that the principal stresses vary in
direct proportion to each other. It is also implied that the strain
ranges A(gl - 52), A(ez - 83) and A(e3 - el) are either in phase with each
other or 180° out of phase, for only in this circumstance do the extreme
values occur concurrently. On the other hand, it is fortuitous that no
consideration need be given to the algebraic sign of these ranges since

they appear in Eq. (2.9) only as squared terms.

However, in the more general case, the strains and strain differences
will be obtained from computations of incremental plasticity. Loadings may
vary so that there is no direct proportionality among the principal stresses,
and the strains and strain differences may turn out to bear a phase relation
other than 0° or 180°. Thﬁs, the procedure described in II.2.1 may be
invalid for the more general case. In fact, the assumption that uniaxial
fatigue data are directly applicable to triaxial fatigue behavior may not
be valid. For example, multiaxiality of stress may reduce the effective
ductility, thus invalidating predictions based on uniaxial fatigue tests
or axial tensile tests. The phase angle is another important variable
regarding which little experimental information is available. When such
information does become available, the procedure may readily be modified.
Until then, however, it is reasonable to assume that conservatism introduced
by safety factors and other engineering compensations will suffice to over-
come any unconservatism introduced by use of the procedure II.2.1 for

treatment of triaxial strains.

When both elasticity and plasticity are involved, the relationship
between stress and strain can become very complicated, even under relative

simple loading conditions. It is reasonable to assume that no simple
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hypothesis for behavior which is suitable for practical applications can
be completely rigorous in its description of the performance. The procedures
described here are the results of most up-to-date researches in aﬁ effort
to seek approximate relations which are sufficiently realistic to lead to

reasonable approximations of actual behavior.

ITI.3 Available Fatigue Results for Bladder Materials

Most fatigue data in the literature pertain to high-cycle (low-
strain) behavior in the form of stress amplitude vs. life cycle curves and
endurance limits (i.e. the asymptomatic stress amplitude). These data are
not useful for the purpose of analyzing bladder folding behavior which
requires strain amplitude vs. life cycle relations from low-cycle (high-
strain) fatigue tests. The study of low-cycle fatigue has its origin in
an attempt to study the effect of cyclic thermal stress., The desired
fatigue data can be found from a relatively small number of recent references
in connection with such thermal stress problems. In the following, the
available data will be listed under several types of information. Only
the materials specified in the '"Statement of Work" in the contract are

considered herein.

II1.3.1 Data from Uniaxial Tests

Most uniaxial fatigue test data for metals and plastics can be
represented by the straight line Eq. (2.7) (if plotted on log-log coordinates)
in terms of two material constants M and z. In this section, for each
material and temperature the ep vs. N data for two points on this straight
line will be listed so that the complete range of data can be easily re-
constructed by plotting the straight line or by determining the constants

M and z based on these two points.

In case of elastomers the fatigue data are given in the form of
extension ratio vs. cycle life curves which are not straight lines. Then

data for more than two points on each curve will be listed.

I1.3.1.1 Data for Metals

Table 2~1 lists some available data for AISI type 300 series stain-
less steel, annealed type 1100 aluminum, gold and titanium alloy under
various temperatures ranging from -320°F (78°K) to + 200°F (367°K). For

comparison and references, data for several materials and temperature
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ranges other than those stated above are also included. All data in Table
2~1 (except pure gold) appear to be obtained from reversed straining on
bar specimens. Some of the data in Table 2-1 are obtained by using Eq.

(2.4) with the values of €¢ glven by static tests cited in the references.

11.3.1.2 Data for Plastics

Table 2-2 lists some available data for Teflon TFE, Teflon FEP and
Mylar under various temperatures. Ref. 5 contains some static test results
(true stress vs. true strain relations) for Teflon felt sheets at room
temperature and at 200°F. Since "failure'" is defined as the appearance of
a surface crack on the sheet, it loses its meaning for Teflon felt sheets
because they are already quite porous before any imposed deformation. For
this reason they are never used alone as a bladder material, but merely
serve as a separation between sheets of other materials. In this capacity,
the only concern is that they maintain their overall material continuity
as a sheet. The fracture strain of the unimpregnated Teflon felt is much
larger than that 6f all the other materials considered. Therefore, when
used in laminations with other materials, unimpregnated Teflon felt will
never break before other materials do. However, this is not true for im-

pregnated Teflon felts.

11.3.1.3 Data for Elastomers

Table 2-3 lists some available data for Parker EPR, RMD EPR and RMD
Nitroso rubbers at room temperature. For elastomers the fatigue life N
is a function of the extension ratio )\ defined as (Ref. 15) (in uniaxial
tests).
_ deformed axigl length

M= original axial length (2.15)

The A vs. N curves are in general not straight lines on log-log coordinates.

Hence, more than two data points are listed under each material.

I1.3.2 Data from Folding Tests

In Ref. 27, a series of rolling of double fold test results are
reported for TFE and FEP Teflon sheets and Teflon TFE/FEP laminates (of
equal thicknesses). These tests have been performed in various propellants

and simulated propellants (or air) at temperatures ranging from 35°F to
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75°F. The results are summarized in Table 2 4.

11.3.3 Data from which Cycle Life can be Computed

Some of the data in Table 2-1 have been obtained by using Eq. (2.4)
with the values of fracture strain € (or tensile ductibility D) given by
static tests. Similarly, the approximate cycle life N may be computed
for a given strain range Ep if the various combinations of test results
on ductibility D, ultimate tensile strength Oy’ fracture stress O¢ and
endurance limit Uend as given in Eqs. (2.11) through (2.14) are available.

Some of these data are collected in Table 2-5.
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Table 2-1

Uniaxial Fatigue Test Data for Metals

Material Test Mode Temperature Specimen Plastic Number References
Shape Strain of Cycles
Range to Fail-
€ ure N
p
Aluminum reversed 300°K bar 0.28 10 8
1100 straining
0.008  10* 8
347 Stain- static 300°K bar 0.30 10 9
less Steel test and
Eq. (2.4) 4
0.009 10 9
120°K 0.27 10 9
0.0075 104 9
5°K 0.17 10 9
0.005 104 9
6A1-4V reversed 300°K bar 0.30 10 10
Titanium straining
0.0014 104 10
Iodide static 300°K bar 0.40 10 9
Titanium test and
Eq. (2.4)
0.012 104 9
120°K 0.50 10 9
" 0.016 10% 9
5°K 0.21 10 9
0.0064 104 9
347 Stain- reversed 300°K bar 0.20 10 8
less steel straining
0.007 104 8
Pure Titan- static 300°K bar 0.16 10 11
ium test and
Eq. (2.4)
0.006 104 11
195°K 0.21 10 11
0.0075  10% 11
78°K 0.27 10 11
0.009  10% 11
5°K 0.18 10 11
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Table 2-1 Uniaxial Fatigue Test Data for Metals (Cont'd.)

Number

Material Test Mode Temperature  Specimen Plastic References
Shape Strain of Cycles
Range to Fail-
€ ure N
p
4
0.006 10 11
Pure static test 300°K wire 0.51 10 5
Gold and esti- 4 _
mate 0.017 10 5
78°K 0.42 10
0.014 lO4
6061-T6 static test 300°K bar 0.09 10 12
Aluminum and Eq. (2.4)
0.003 104 12
78°K 0.15 104 12
0.004 10 12
20°K 0.17 10 12
0.005 104 12
Annealed reversed 300°K bar 0.28 10 6
4130 Steel straining
0.003  10% 6
Titanium reversed 300°K bar 0.25 4 13
straining
0.021 1500 13
Annealed reversed 300°K bar 0.12 25 13
304 Steel straining
0.016 60 13
Annealed reversed 300°K bar 0.24 14 13
310 Steel straining
0.03 330 13
Annealed reversed 300°K bar 0.09 7 13
350 Steel straining
0.018 230 13
2014 T-6 reversed 300°K bar 0.20 4 13
Aluminum straining 0.02 400 13
5456 H311l reversed 300°K bar 0.13 7 13
Aluminum straining 0.03 200 13
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Table 2-2 Uniaxial Fatigue Test Data for Plastics

Material Test Mode Temperature Specimen Plastic Number References
Shape Strain of Cycles
Range to Failure
€ N
%)
Teflon reversed room bar 0.78 10 5
TFE straining
0.30 103 5
200°F 0.72 10 5
0.10 103 5
Teflon reversed room bar 0.81 10 5
FEP straining
0.55 103 5
200°F 0.90 10 5
0.75 103 5
Mylar static test room sheet 0.63 10 5
and estimate
0.20 103 5
200°F 0.37 10 5
0.05 103 5
Teflon repeated 300°K not 0.05 1500 14
TFE stressing given
0.042 13000 14
Teflon repeated 300°K not 0.0075 200 14
FEP stressing given
0.0055 1500 14
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Table 2-3 Uniaxial Fatigue Test Data for Elastomers

Material Specimen Test Mode Temperature Extension Number of References
Shape Ratio Cycles to
A Failure N
Parker EPR tensile repeated room 2.88 10 5,16-26
No. 505-8 strip stretching
2.19 102 5,16-26
1.77 lO3 5,16-26
1.51 104 5,16-26
1.35 10° 5,16-26
1.24 106 5,16-26
1.15 107 5,16-26
RMDEPR No. tensile repeated room 2.89 3000 5,16-26
132 strip stretching
2.44 10* 5,16-26
1.88 105 5,16-26
1.56 106 5,16-26
1.37 107 5,16-26
1.25 108 5,16-26
RMD tensile  repeated room 2.62 lO3 5,16-26
Nitroso strip stretching
Rubber
1.94 lO4 5,16-26
1.55 105 5,16-26
1.34 10° 5,16-26
1.21 107 5,16-26
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Table 2=4 Rolling of Double Fold Test Results for Teflon (Ref. 27)
(+ indicates no failure)

Specimen  Thickness Environment Temperature Range of Number of Number of
(mils) (°F) Cycles to Failure Tests
N)
TFE sheets 6 air 75 3300-5100 5
3 air 75 2800-7600 3
14 air 75 20,200 1
6 Methylene 75 8000 + 1
Chloride 70-90 )
D . -
FEP sheets 3 air 75 900-6000 + 29
TFE/FEP 6 air 75
Laminates air 35 3200-6000 +
507% Hydrazine- 75 400~-850
507 UDMH
35 75-250 4
UDMH (unsym- 75 5000 +
metrical
Dimethyl
Hydrazine)
35 50-5000 + 5
MMH 75 5000+ -25500 4
35 150 2
Nitrogen 50 2600 1
Tetroxide
60 5000
35 100-5000+ 8
Methylene 51 6000 + -32750 + 3
Chloride
35 300- 5000+ 2
TFE/FEP 6 Freon TF 75 11000 + 2
Laminates
56 32,750 +
35 6000 +
50% Isopro- 75 1000-6000 + 4
panol - 50%
water
35 100-300 4
3 air 75 1800
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Table 2~4 (Cont'd.)

Specimen Thickness Environment  Temperature Range of Number of Number of
(mils) °F Cycles to Failure Tests
)
35 1700-4100 2
Freon TF 75 6000 + 2
35 6000 + 1
12 air 75 5400 + - 11500 2
50% Hydro- 35 50-250 3
zine - 50%
UDMH
UDMH 75 5000 +
MMH 75 5000 +
N204 55 | 5000 + - 18000+ 2
Methylene 51 5000 + 1
Chloride
35 5000 + 1
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III.0 TASK 2.0: ANALYSIS OF SINGLE FOLDS

The stationary simple fold (or single fold) is shown in Figure 1-la.
Folds of .this type are observed throughout the expulsion cycle. The strains
associated with the simple fold consist primarily of extension of the out-
side fibers and compression of the inside fibers of the material. Depending
upon the material and the radii of curvature involved, various approxima-

tions can be made to facilitate the analysis of simple folds.

For example, when the bladder consists of laminated metal and plastic,
a good first approximation is that plane sections through the thickness of
the laminate remain plane after the load has been applied. This approxima-

tion reduces the analysis to a one-dimensional problem, and only a wedge-

shaped slice of the cross-section need be considered (See Figure 3-1). For
materials such as elastomers, however, a simple experiment shows that the

"plane sections remain plane" assumption is not valid for very small primary

radii of curvature. In this case, considerable shearing deformations take

place in the immediate neighborhood of the simple fold.

Thus, the analysis of a statiomary simple fold can be divided into
two tasks, one involving no shear (plane sections remain plane), Task 2.1,
and the other including shear deformations, Task 2.2. Note that the second
analysis (including shear) is two-dimensional in character, since it involves
variations in both the radial and circumferential directions. Naturally,
this two-~dimensional analysis is considerably more complicated than the

"one-dimensional plane sections" approach.

Because of its inherent simplicity, one would prefer to employ the
"plane sections" approximation. In order to have confidence in this simpli-

fied amalysis, however, one must investigate the problem including shear

deformations and determine when the simple analysis is adequate. From a

physical standpoint, it is apparent that shear deformations will be negligible
as long as derivatives in the circumferential direction (i.e., around the
fold) are sufficiently small. Thus, it is anticipated that the simplified
analysis will apply when the primary radius is greater than the thickness,

and the two-dimensional analysis will be required when the primary radius
becomes very small. The method of solution for the two cases is outlined

in the sections which follow.
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III.1 Task 2.1: Formulate an ''N-Layered' Model -

In this task, a simplified analytical model is developed to predict
strains produced in a single fold of a composite bladder. The analysis
is based on the approach of Hill (Ref. 30) and it makes the following
assumptions: (1) shear strains are neglected; (2) elastic strains are
negligible; (3) the Tresca Yield Law is valid; and (4) the materials
are perfectly plastic. Once plastic folding strains are thus computed,

they can be used for fatigue 1life prediction.

III.2 Elastic Bending of a Laminated Sheet

Consider the elastic bending of a wide laminated sheet where there
is negligible strain in the width direction (state of plane strain).

Polar coordinates (r, 0) are used as shown in Figure 3-1.

-

i
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Figure 3-1, Elastic Bending of a Laminated Sheet

Under pure bending, the strain in the nth layer of the laminated sheet is

o(m) (™ = = (r,_,Sr<r) (3.1)




where ¢ is the radius of curvature of the neutral surface. If the
material obeys Hooke's law, the stress in the nth layer is given by (see,

for example, Reference 31,Page 5)

Oe(n) (r) = ———rde— (3.2)

where En and v, are the modulus of elasticity and Poisson's ratio,
respectively, of the material in the nth layer. Substituting Equation (3.1)

into Equation (3.2) we have

E
%(n) (¥) = L _n\)z <§ N ) (rpy2rr) (3.3)
n

To determine the value of c¢, let us consider the bending of an
elemental strip cut from the plate by two planes perpendicular to the
width ©of the plate and a unit distance (say 1 inch) apart. We have then
the problem of pure bending of a laminated beam with a cross section as
shown in Figure 3-1(b). Since materials differ from layer to layer, the

effective cross-sectional area of the beam is as shown in Figure 3-1(c)

where the thickness of each layer is maintained and the width differs from

layer to layer such that for the nth layer the width is
(w, = 1 inch) (3.4)

(See, for example, Reference 32,Page 229.) The neutral surface r = ¢
must pass through the centroid of this cross-sectional area. If t is

n
the thickness of the nth layer such that

we should have



c-r = (3.6)

with

y_ o= 2: t = r -1 (3.7)

Substituting Equation (3.4) into Equation (3.6) we have

c = r_+y, (3.8)

with
N tn
&gﬁ Entn Yn =2
y, = W (3.9)
2 Bty
n=1
Substituting Equations (3.7) and (3.8) into Equation (3.3) we have
By <ro ¥y
o - (r) = - (3.10)
6(n) “"n 1 v2 ro+y,
n
or
E(y -v))
r = i ¢ -y (3.11)
© (1 -v9) o (r ) ¢
n’ “6(n) ‘"n

Thus for each value of Ge(n) (rn) = Yn, (i.é., if the stress at the outer
boundary of the nth layer is the yield stress of the material in the nth

layer), we have



E
2 Iyn Yl oY (3.12)

¢
(1 - vn) Yn

T o(n) (n) =

Similarly, if the yield stress occurs at the inner boundary of the layer

94(n) (rn_l) =Y , we have

1

.___._.___.__.2 -y (3.13)
(1 - \)n) Y

To(n) (n - 1) ¢

Iyn-—l -~ Ve

If all the values of r (n) and r (n-1) are computed for
o(n) o(n)

n=1,2, ... N the maximum of these values give the value of a = ro(max)
when some point in the laminated sheet just starts to become plastic. For
any value of a, which is less than ro(max), the elastic formulation
presented in this section does not hold. Hence, this value of a, will be
used as the initial value of the inner radius of curvature "a" for forward
computation of the plastic strains in the laminated sheet. The initial

value for the outer radius of curvature "b" is then
b, = & +yy (3.14)
and for the radius of the intermediate layers
r = a +y (n = 1,2, ... N) (3.15)

Since the circumferential strains are given by Equation (3.1), the
original length of the flat unbent laminated sheet LO is stretched or

compressed by the amount

r, -c
AL(rn) = Loee(n) (rn) = L=
(n = 1,2, ... N) (3.16)
ro . -¢
AL(rn_1)= Loee(n) (rn_l) = LO .

at the extreme fibers of the nth layer.
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The elastic strains caused by the stretching and compressing of
fibers will be considered negligible as compared with the plastic bending
strains in the subsequent computation. The sole purpose of this section
was to estimate systematically the finite initial radii of curvature for
various layers at the start of plastic bending.

III.3 ©Forward Numerical Computation of Plastic Bending Strains in a
Laminated Sheet

When the initial values of r (n=0, 1, ... N) are systematically
determined as in Section III.2, we can proceed to the "forward" computation
of plastic bending strains in a laminated sheet. Since maximum strains
occur at either of the extreme fibers of each layer, we shall confine our

consideration to the strains at these extreme fibers.

If thinning of the layer thickness and movements of the individual
fibers are taken into account, the "forward'" numerical computation of
strains in these extreme fibers of all the layers can be accomplished in

the following steps:

a. Location of Neutral Surface as o = ao

1. Compute the initial bending angle o (per unit original length)
by the incompressibility condition Reference 30, page 290, Equation (12).
2 2

o = - (3.17)
o a + bo ro(ao) + rN(ao)

2. Assume that the neutral surface r = c(ao) lies in the qth
l L]
ayer rqb_l(ao)s rs;rqo (ao) (qos'N) Note that the neutral surface
in plastic bending does not necessarily lie in the same layer where the

neutral surface in elastic bending lies,

3. Compute the constants Cn(ao) (n = q,» 9, +1, ... N) by



CN(aO) = —po(ao) - 2k log rN(ao)
(3.18)
Cn(a ) = Cn+l(ao) - 2(kn - kn+l) 1og rn(ao)
(n = qo’ qo + 1, ... N-1)
4. Compute the constants Dn(uo) (n=1,2, ... q) by
Dl(ao) = —pi(ao) + 2k, log ro(ao)
(3.19)
Dn(uo) = Dn_l(ao) + 2(kn - kn_l) log rn_l(uo)
(l’l = 2, 3, . qO)
5. Compute c(ao) from
D - C
Exp.[ qo(uo) qo(uoi
c(ao) = T (3.20)
%
provided
rq _l(ao) < c(ao) < rq (aO) (3.21)

(0] (6]

6. If c(uo) does not satisfy Equation (3.20), assume

another layer for location of c(ao) (i.e., change the value of qo) and

repeat steps (2) through (5) until a value of c(ao) between Ty _l(ao)
o
and r (ao) is obtained.

o
7. If Equation (3.20) cannot be satisfied for any layer in

the sheet, the pressures po(ao) and pi(uo) are too high for the analysis

to be valid. Proceed to cases with lower values of po(ao) and pi(uo).



b. Strain Increments as o is Increased by Au

1. As the angle of bending ol is increased by a small

amount ba _, the decrements of various radii of curvature rn(uo) (n = 0,1,2,

... N) are

2
¢ (uo) Ao
Arn(ao) = I‘n(ao) + W 5&; (3.22)

Hence, the new radii of curvature rn(al) are
rn(al) = rn(uo) - Arn(ao) (3.23)

2. The instantaneous ("logarithmic") strain increments at

the extreme fibers of the various layers are

cg(ao) Auo
Aeg ao,rn(ao) = -be, ao,rn(ao) = (1 -5 (3.24)
r {a ) o
n o
This expression gives tensile circumferential strain increments Ae, for

)
and compressive circumferential

gstrain increments Ase for fibers inside the neutral surface (r

fibers outside the neutral surface (rn > ¢)
0 < c).

3. The new\angle of bending a, can be computed from the

incompressibility condition

% [rg(ao) - ri(uo4 Lo, = -% [rﬁ(al) - ri(ul)] Loy (3.25)
or
2 2
(a ) = v (a )
oy % 0% o (3.26)

rg(al) - ri(al) ©



In Equation (3.25), L, 1is the original length of the flat laminated sheet.

L4, When the angle of bending is @, the length of the

extreme fibers of the nth layer is

Ln(ao) = Loaorn(ao) (n = 0,1, ... N) (3.27)

When the angle of bending is increased to o the length of this fiber

l,
becomes

Ln(al) = Loalrn(al) (n = 0,1, ... N) (3.28)

Hence, the change of fiber length during plastic bending from o to oy is

ALn(ao) = Ln(al) - Ln(ao) = Lo alrn(al) - aorn(ao) (3.29)

5. If the tension (per unit width applied to the ends of the
sheet) necessary to balance the pressures po(ao) and pi(ao) during

bending is kept constant, the new pressures at the angle of bending oy

are according to Equation (15) on Page 292 of Reference 30.

r {a )

p(al) = p(a)j——)-o

o] o] 6] rNul
(3.30)

ro(ao)

p;log) = p;la)) r_(a])

6. Neglecting the elastic strains, Equation (3.16), we have

the cumulated instantaneous "logarithmic" or "natural strain at r = r

as a = o, according to Equation (3.24)

gq al,rn(al) = -e |ag, rn(al) = Mgy o rn(ao) = |1 -« ——|—



The "conventional" or "engineering" circumferential strain due to plastic

bending is from Equation (3.28). (See Reference 30, Page 9)

Ln(cxl) - L,
%.r (a = ————i;—————- = alrn(al) -1 (3.32)

which corresponds to the "logarithmic" circumferential strain of

A 4

Ee[u,rn(al)] = log {1+ e, [al’rn(al} = log [alrn(alﬂ (3-33)

For infinitesimally small bending angle increments, the values of the
logarithmic strains computed in Equations (3.31) and (3.33) should agree.
Hence, comparison of these values can serve as a guide to the choice of

step size Aa/2a for the computation.

c. Location of Neutral Surface as o = al

When rn(al) (n=0,1, ... N), po(al) and pi(u ) are

1
obtained in (b), the steps in (a) can be repeated with o replaced by

oy to compute the constants Cn(al) and Dn(al) and the location of the

neutral surface

D (a,) -C_ (a )]
1 1
cla)) = Exp: [qlhk = (3.34)

which is in tne qlth layer of the laminated sheet

rql_l(al) < c(al) < rql(al) (3.35)

d. Strain Increments as as is Increased by Aas

The steps (b) and (c) can be repeated for successive incre-
ments of the bending angle o. During the increment of o by a small

amount Aas, we have the following expressions for the radii of curvature,
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strains, elongations, pressures, and the location of the neutral

surface:
1. The radii of curvature
c2(a ) | Ao
r (o) = v (a)-|r (o) +—2r| ==
n' s+l n's n s rnZQS; 2as
2. The instantaneous "logarithmic" strain increments
cz(as) Aas
A€6 OLs’rn(ms) = _Aer 0‘s’rn(ms) = |- 2, |20
r (o ) s
n'’s
3. The new angle of bending
2 2
. rla ) - r(a,) .
N %s+1’ T To'%s+1
4, Fiber lengths
Ln(as+l) - Loas+lrn(as+l)
5. Outer and inner pressures
r (o
po(as+l) = po(as) rN(aS) )
N' s+l
r (a_)
pi(as+l) = pi(as> r ?a : )
o s+l
6. The cumulated instantaneous logarithmic strain at
as o = a is

s+l
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r

(3.36)

(3.37)

(3.38)

(3.L0)

il
>



- s C

Ee [as+l’rn(as+l)} = -Er Las+l’rn(as+l)] = AEB [ag’rn(ag)}
g=0
s [ ce(a )| Aa
a
=0 | rn(ag) g

i) [us+l’rn(as+li] = usflrn(as+l) -1 (3.42)
which corresponds to the logarithmic circumferential strain

€g as+l’rn(as+l) = 1log [as+lrn(as+l)l (3.43)

T. Location of the neutral surface at o = o is

S
[D (a ) - C (a,)]
R q S q S
ela) - Bl % e 5 (3.41)

where Cq (us) and Dq (as) are computed according to Equations (3.18)

and (3.193 with o reglaced by o.

e, Total Plastic Bending Strains as o = g

After S number of small increments of the bending angle

o, the radii of curvature for various layers (n =0, 1, 2, ... N) are
2
c Mo, )l Aa
S-1 S~1 .
r (a,) = r (o, ,) -{r (o, .) + (3.L45)
n S n' s-1 n' S-1 rn(as_l) 2us_l
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The outer and inner pressures are

T
polag) = pylag ;) _11\1_‘_(_‘:_3_:%_)_
© N %s
(3.46)
(ag) = ————;—r o 76y
Pit%g %_1) T Ta
The cumulated instantaneous logarithmic strain at r = rn(as) is
S-1 02(u )| A
€q T, (u W9 = €, us,rn(as) = 1 - ;525&; -555 (3.47)
g=0 n g &
The conventional circumferential strain at r = rn(as) is
€q [as,rn(us)] = asrn(us) -1 (3.48)
which corresponds to the logarithmic strain
€q as,rn(as) = log {%3rn(as)] (3.49)

Since the initial thickness of the laminated sheet (before

plastic bending strains set in) is

t(ao) = rN(ao) - ro(ao) (3.50)
and the thickness as o = g is

tlag) = rylag) - r_(og) (3.51)

the total thinning of the laminated sheet as 0. is increased from N to

o is
S
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At = r (uo) -1 (ag) = [r (o) -1 (a (3.52)

NS o' o o S)

III.4 Conclusions

The numerical solution for the plastic bending strains in a single
fold multilayered bladder by the "forward" computational procedure has been
formulated. This procedure requires computation of the elastic strains
before plastic strains set in but has the advantage of specifying the
initial thicknesses of the layers. Table 3-1 shows some typical numerical

results generatad using tle computer program developed for this analysis.

Table 3-1 - Typical Numerical Results

Folded Unfolded Cumulated
Layer Material K(PSI) Thickness Thickness Log Strain
(In.) (In.)
[Total] [Totall]

Case 4F (Folded Imner Radius = 0.0127 in.) Forward Calculation

Inner
Surf
urface -.6700
1 TFE 800 .0074 .005
-,2008
2 1100-0 3000 .0098 .010
.1998
3 TFE 800 .0039 .005
Outer - .3217
Surface [.0211] [.020]
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II1.5 Task 2.2: Finite Element Model

When shear deformations are included, it is necessary to consider
derivatives in both the radial and circumferential directions, r and 9.
To perform this analysis, a two-dimensional "finite element" approach
has been developed. The analysis closely parallels a previous study
performed by TRW Systems which calculates elastic-plastic stresses and
strains for two-dimensional regions. However, in the present formulation,
large strains and displacements are considered, in addition to elasto-

plastic behavior.

A review of the literature revealed that there was no finite element
computer code available which solved large plastic strain problems
accurately. Therefore, to satisfy this task, TRW Systems developed a
code which could handle such problems, since large plastic strains
do indeed develop in single (and double) folds. This method is based
upon an incremental variational principle which is used in a piece-wise
linear solution procedure. An equilibrium check and corrective cycling
method are included in the formulation which prevents the computer
solution from straying from the "true" solution. The present formulation
constitutes a major contribution to the state-of-the-art in nonlinear
solid mechanics, and will be presented in detail in the following sections.
Also included is a literature survey of existing alternate finite element

solution procedures.
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I111.5.1 Introduction and Literature Search

Classical mechanics, despite its increasing sophistication, is
capable of solving only highly idealized structural analysis problems.
This situation is especially obvious for problems involving physical
or material nonlinearities. For this reason, an alternate approach to
such problems, using the finite element method, has become increasingly
popular. In the finite element approach, the structure or continuum
is modeled by a network of discrete simple structural components, called
finite elements., These elements are joined together at common nodal
points, and the gross behavior of the collection of such nodal points
simulates the behavior of the structure. The field variables, such as
internal displacements, are approximated within each element by inter-
polation on nodal point values. An energy principle is used to generate
the field equations for each element. These equations are assembled,
using compatability of common node point values, to form the field
equations for the entire structure. Structures of various types (plates,
shells, solids, etc.), and of rather arbitrary geometries, can be modeled
using this procedure by careful selection of the finite element charac-
teristics. Nonlinear structural response can also be studied using the
finite element procedure. In the following sections a literature review
is presented in which finite element approaches to continuum problems
involving geometric nonlinearities, material nonlinearities, and combined
geometric and material nonlinearities are surveyed. Following this
review, a new solution procedure for general nonlinear static structural

response problems is given, which was used for all work reported herein.

Many authors have applied the finite element method to geometrically
nonlinear problems (Refs. 33 - 39). From this work, basically three classes
of finite element formulations can be defined; Class I - Incremental
methods without equilibrium checks; Class II - Direct solutions of the
governing nonlinear equations; and Class III - Incremental methods with

equilibrium checks.

Historically, Class I was the first finite element approach to
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solving geometrically nonlinear problems (Refs. 33, 40, 41). In this method,
the load is applied to the structure in small increments, and the incremental
displacements due to each load step are determined. Incremental stresses

and strains are computed at each step and used in the following load

step. Although this method is computationally very fast, it has the
disadvantage that equilibrium at any particular load level is not necessarily
satisfied. No attempt is made to determine if equilibrium requirements

are indeed met, and the same problem must be repeatedly solved using

successively smaller load steps to assess the solution accuracy.

The direct solution method (Class II) involves applying the total
load to the structure and computing the total response by using mathematical
iterative techniques. This approach may be subdivided into two distinct
categories; (a) direct minimization of the potential energy; and (b) direct

solution of the nonlinear algebraic equilibrium equations.

References 37and 42 employ mathematical programming methods to

numerically minimize the poténtial energy functional. An advantage of

this method is that minimum computer storage is required since no system
stiffness matrices are assembled; rather, the potential energy for the
system is obtained simply as the Scalar sum of the energies of the individual
elements. However, if second order gradient methods are used to perform

the energy search, in order to speed convergence, this advantage disap-
pears. Additionally, only stable equilibrium configurations can be de-

termined, making the interpretation of the results awkward in some cases
(Ref. 43).

In the second category mentioned under Class II, mathematical
iterative methods are applied to the governing nonlinear equilibrium
equations. Oden (Ref. 38) has applied this scheme successfully to nonlinear

elasticity problems. Newton-Raphson interation was used to solve the

equilibrium equations.

A major disadvantage of both Class II methods is that they are not
applicable to path dependent problems, such as plastic deformation. A

summary of the Class I and II methods is given in Ref. 34,

The third class of solution techniques involves determining the
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incremental solutions due to a series of load steps and applying equilibrium
checks and (if necessary) corrections, to the solution. Unlike Class I,
this method insures that the solution satisfies equilibrium throughout

the loading history (Refs. 44, 35, & 36). This procedure was introduced

by Wissmann (Ref. 44). There are numerous computational schemes that

are associated with this class. For example, in order to minimize computer
time, Ref. 35 corrects for equilibrium at only every four steps. Ref. 36
iterates at every load step to satisfy equilibrium, but does not necessarily
use the "exact' incremental stiffness matrix. Ref. 44 uses a ''progressive
iteration with back-substitution' method for each load step. The present
approach uses the class TIII method with two different computational
refinements. The first is to interate at each load level, using the

"exact" stiffness matrix, until equilibrium is satisfied. The second
technique is similar to the Class I approach but attempts to correct for
equilibrium at each load step by using the unbalance force from one step

as a pseudo load in the next step. This method is computationally
equivalent to Class I but has the advantage that the solution is continuously

monitored and improved.

Other types of nonlinear problems which have been solved using the
finite element procedure deal with material nonlinearities, in particular
elasto-plastic behavior. Two general methods have been developed for
the elasto-plastic analysis of structures. These are, (a) the initial

strain method, and (b) the tangent modulus method.

The initial strain method (Refs. 45 & 46) treats the plastic strains
at each incremental load step as initial strains for the next load step.
In this method, plasticity effects are taken into account as pseudo
loads, and the elastic stiffness matrix is used throughout the entire
loading process. The advantage of this method is that for small dis-
placements problems, the governing stiffness matrix need be built and

"inverted" only once.

The tangent modulus method (Refs. 39, 47, 48, 49, and 50), on the

other hand, is based upon the incremental stress-plastic strain laws of
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plasticity. In this method, plasticity effects are accounted for in

the stiffness matrix, which is updated at each load step. It should

be noted that when solving large deflection problems by the incremental
methods (Classes I and III), a new stiffness matrix is required at each
load step. Thus, the large deflection incremental methods combine well
with the tangent modulus method, since it also requires a new stiffness
matrix at each load step. As pointed out in Ref. 51, the tangent modulus
method offers the additional advantage of using larger load increments

than when using the initial strain method.

Only a few references have been found in which both geometric non-
linearities and plasticity are treated within the framework of finite
element theory (Ref. 39, 50, and 52). Refs. 39 and 50 use a Class I
method with the tangent modulus approach, while Ref. 52 uses a Class I

method with the initial strain approach.

The present approach develops the governing incremental finite
element equations for large strain, elasto-plastic problems. The
formulation presented is similar to that given by Felippa (Ref. 39) but

uses a different variational principle. The derivation of Ref, 39 is

_ based on on incremental variational principle that assumes the stresses

at the reference state are in equilibrium with the applied loads. This
leads to an incremental finite element formulation which does not check
to determine if equilibrium is satisfied (i.e., Class I method). The
present metﬁod does not assume a priori that the reference state is in
equilibrium. Consequently, the variational principle used herein leads
to a Class III formulatibn, and equilibrium is checked and controlled

throughout the loading history.

I11.5.2 Incremental Variational Principle

In this section, the general formulation of the piece-~wise linear
incremental solution of structures problems, involving both material and
geometric nonlinearities, will be presented. This formulation is based
on an incremental variational principle as given by Washizu (Ref. 53).

In the incremental variational principle, the body is considered at an
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an arbitrary reference state V_of the load path (See Figure 3-2),

R

final

current
Vo=V v
c='Rr + A

reference

original

v
o

X, current

X coordinate
i
= local (initial)
X, R
i coordinates
global
coordinates

Figure 3-2 - Incremental Procedure

It is assumed that all state variables are known at the reference state
VR‘ The reference state VR may be regarded as the initial stressed
state for determining the stresses, strains and displacements of the
current state VC' The current state is assumed to be incrementally
close to the reference state (i.e., VC = TR + AY). The local initial
coordinate system X; for an element in the body is taken as a Lagrangian
frame for the current state VC. This coordinate system is assumed to be
inscribed on the body, and when the body deforms in going from VR to TC
these coordinates also become deformed (convected). The global reference
systemiii is used to assemble all the elements of the discretized body.
For some problems it is convenient to let the local coordinate system

Xi and the global coordinate systems ii coincide.

Let Aui(i = 1,2,3) (measured along the Xi coordinate direction)
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be the incremental deflections of a point in the body in going from

VR to VC’ then

X, = Xi + Aui (3.53)

describes the relationship between the convected local coordinates

(current coordinates) and the initial coordinates.

Consider a structure at the beginning of a particular loading
increment N. At this time, the initial coordinates X, and current

(o)

coordinates x, are identical. Assume that stresses 043 , surface

(%) (0)

tractions Ti and body forces Fi are acting on the structure at
this time, i.e., prior to the addition of the increment of load for step
N. These stresses and loads are with respect to the initial coordinate
axis and are referred to a unit of area before the addition of the load
increment. The stresses are therefore 'true' stresses. For future
reference, the area and volume of an element before the load increment
is applied will be referred to as the "undeformed" area and volume,
respectively. The area and volume after the load increment is applied
will be referred to as the '"deformed" area and volume, respectively.
Next, impose on the structure the incremental surface traction ATi and
body force AFi. These give rise to additional stresses Aoij, incremental
displacements Au., and distort the coordinates X, . Thus the total
stresses, surface tractions, and body forces at the end of load increment

N (at State TC) are given by

(o)

g,, = 0,, + Ao, , (3.54a)
1] ij 1]
_ o (0)
T, = T, + AT, (3.54b)
_ o (o)
F, = F; + AF, (3.54¢)

The stress tensor Gij is the Kirchoff stress, which is referred to a
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unit of area before the addition of the incremental loads for step N
("undeformed" area), but are with respect to the current (convected)

axes X, (Ref. 54). Likewise, Ti and Fi are referred to "undeformed"

area and convected axes.

From Ref. 53, the principle of virtual work is

c,, 8E,, dV = T, 6u, dS + F, Su, dv (3.55a)
ij ij i i i i
v

v S

For the initial stress problem, Eq. (3.55a) becomes, for incremental

load step N,

(o)
'l (oij + Aoij) 6(AEij) dv

- (o)
= f(Ti + AT,) 8(duy) dS
]

+ [(Fi(°) +AF) §(buy) dv (3.55b)
v

where AEij is the incremental Green's strain tensor, and all integrals
are referred to the "undeformed" volume of the element. The strain
tensor can be written as

L

AE,, = Z(Aui,j + Auj,i + Auk,i Auk,j) (3.56)

ij

Substituting Eq. (3.56) in (3.55b) gives

(0) ‘
/(Oij + Aoij)(éki + Auk’i)cSAuk’j dv

v

(3.57)
= /(T,(°) + AT,)8Au, dS +/(F.(°) + AF,)8Au. dv
1 i 1 1 1 1
S v
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where Ski is the Kronecker Delta function.

Rearranging Eq. (3.57) leads to
(o)
o,. A . 0A , + Ao, , GAu, ,
| ©ag" Bii,q 000, * 89y5 00

+ Aoij Auk,i GAuk’j) dv =./VAF1 GAui dv (3.58)

(o)
+/AT, Shu, dS + (F.(°)5Au. - 0o,, SAu, ,)dV + 7. (©sru.ds
s 1 i v 1 i ij i,j g 1 i

The incremental constitutive law in Lagrangian variables is (Ref. 54)

Ao =

ij Cijkl AEkQ (3.59)

where Cijk%

elastic-plastic problems. Various forms of the constitutive law are

may include the effect of past loading history, as in

considered in more detail in a later section. Using Eq. (3.59) in

(3.57) and neglecting high order terms gives

(o)
'/\;(Oij My 3 Sdu o % Cyypg Doy p S0y AV

=/AF. SAu, dv +/AT, SAu, dS +/G‘.(0)6Au. — ) sau, yav
v 1 1 N s 1 1 v 1 1 1] 1,]

+fT.(O)6Au.dS (3.60)
s 1 1

If it is now assumed that the initial stress state, denoted by
0..(0), T.(o) and F.(o)
ij i i
incremental loads for step N, then the last three integrals in Equation

» 1s-in equilibrium prior to the addition of the

(3.60) vanish, and the formulation similar to that of Ref. 39 results.

However, due to the numerical incremental solution technique for solving
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a large strain problem, the initial stress state may not be in equilibrium
before load step N. As will be shown in a later section, it is possible

to derive an equilibrium error check if these terms are retained.

Note that the total stresses Oij resulting from load step N become
initial stresses for step (N+1). For step N, these stresses are referred
to a unit of undeformed area, and current axes X, . However, for step
(N + 1), these stresses must be referred to deformed area and the initial

axes Xi' The relation between Kirchoff stress tensor Oij and the Eulerian

stress tensor Oij(O) is (Ref. 54)
oX aX;
N (o) i j
%13 T lax %ke Bk Bx, (3.61)

where IBX/BX‘ is the determinant of the matrix [Bxi/BXj]. Neglecting

higher order terms, the inverse transform of Eq. (3.61) gives

. (o) NE -lO Bxi 9%, 3.62)
ij X "k SXk SXR

as the desired transformation. From Equation (3.53),

oxX,

1—-
an = Gik + Aui,k (3.63)

gives the derivatives of - Eq. (3.62), and

ax

-1
BXI ~ (1 - Au - Au - Au ) (3.64)

1,1 2,2 3,3

the scaling factor. Using Eq. (3.63) and (3.64) in (3.62) and neglecting

higher order terms gives

(o) _
Oij = (1 Aekk) Gij + i Auj,k + Ojk Aui,k (3.65)
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Likewise, the surface tractions transform as

(o) _ _
Ti = (1 Aekk)Tk(Sik + Au

i,k)' (3.66)

I11.5.3 Alternate Variational Statements

It is instructive to consider the way in which the present
formulation differs from those of other investigators (Refs. 38,40,55).
Oden (Ref. 55) uses the original undeformed structure in constructing an
incremental virtual work statement. Therefore, the strains and displace-

ments in Equation (3.55a) are total strains and displacements.

Since the undeformed body is taken as the reference state, the

forces, stresses, and displacements can be written as

o)

iy = Gij + Aoij (3.67a)
R T§°) + AT, (3.67b)
F, = F.°) + AR, (3.67¢)
u = u§°) + buy (3.674)
where u§°) 1s the initial displacement prior to the current incremental

step. Using Equations (3.67) in (3.55a), neglecting higher order terms,

and assuming the initial stress state is in equilibrium gives

(o) (o)
,/;(Gij Auk,i Guk,j + AoijsAui,j + Acijuk,iéAuk’j)dV

= j; AF 80u, 4V + j; AT, 8Au,dS (3.68)

Furthermore, using the constitutive law, Equation (3.59), and the surface
traction transformation, Equation (3.67), and again neglecting higher

order terms, gives
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(o)
.}i}°ij N S ALL

i §k8 uk LG (O)GAun’j + Téo)Aui,kéAui)dV (3.69)

. (0 /
—d/: KT (8, + uk,i)GAude + f_ AF 8au dv

(o)

Note the presence of the initial displacements u,

+

in Equation (3.69).
These are not necessary in the incremental virtual work statement of

Equation (3.60) due to the selection of a different frame of reference.

Mallett and Marcal (Ref. 34) start their formulation with
equation (3.55a) but do not neglect higher order terms after the strain-
displacement and stress—strain relations have been substituted into the

virtual work statement. This gives
(c u Su, . +C,. . u .8(u, ,u )
v ijkd ™k, " i,j ijkf n,k " i,j n,8

+ C..-l lu ’]u ,zu ,.611 ’i)dV —fT. u.dS +f F' u.dv

In a later section, it will be shown how the various wvirtual work state-

ments lead to different finite element formulations.

111.5.4 Constitutive Law

In this section, the constitutive law used for the work reported
herein will be considered. Equation (3.59) gives the general form which
will be specialized for elastic and elasto-plastic problems. For planar
problem, the stresses and strains will be arranged in a vector as

o5 = {011022033012} = {o} (3.71a)

{

Eij = Ell 99 332E } = {E} (3.71b)

It should be noted that for plane stress, O33 = 0, and for plane strain,

E33 = 0, In matrix form (which is more convenient for the following

development), the stress-strain law becomes
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{c} = [CHE} (3.72)

where [C] is a 4 x 4 matrix containing the Cijkk'

I1I1.5.4.1 Elastic Behavior

For plane stress, the [C] matrix is

1 u 0 0
u 1 0 0

[cl = —E_ = [c,] (3.73)
a->y o o o o

0 0 0 %(1—11)
- .

where E is the elastic modulus, and y is Poisson's Ratio. For plane

strain and axisymmetric stress analysis,

-

[(1- w) u " 0
= — B | M (1-w) w 0 f.r
] = wam =, (3.74)
u u (1-w) 0
L0 0 0 F(1-2u)

In the following development, the matrix [Ce] will be referred to as

the elasticity matrix.

I111.5.4.2 Elasto—Plastic Behavior

For elasto-plastic problems, the strains can be considered as
being composed of elastic portion, {Ee}, and a plastic portion, {Ep}.

The total incremental strain is then

{dE} = {dEe} +{dEp} (3.75)

where '"d" indicates differential., With this definition, Equat&on (3.72)

becomes

{do} = [c J{dE_} (3.76a)
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or, using Equation (3.75),
{do} = [c ] (1aE} - (aE_h (3.76b)

In order to relate stresses to total strains, the plastic strains in
Equation (3.76b) must be expressed in terms of total strains. This is

considered in the following section.

The flow rule of plasticity states (Ref. 51)

Q.
Ql

(e} = 2 {s} (3.77)

glhﬂ
e

where

- _1
Sij = Gij %%k (3.78a)

are the devatoric stresses, arranged as

{s} = } (3.78b)

1811 823 S33 251
and H' is the slope of the equivalent stress (denoted by o)-equivalent

strain (Ep) curve
do = H' dEp (3.78¢)

The Von Mises Yield Criterion gives

-2 2 2 2
2 © = (011 - 022) + (022 - 033) + (011 - 033) €3.79)

2
+ 6 919
for two-dimensional problems. Differentiating Equation (3.79) implicitly

leads to

& = = {s}T {ao} (3.80a)

20
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Combining Equations (3.76b), (3.77) and (3.80a) eventually leads to
{do} = [c 1 (IT] - [e]) {dE} (3.81a)

where

51 8371l

— 2
20 @ T .
5 '+ 8} [c_ ] s}

[Q] = (3.81b)

is the plasticity matrix. For plane strain and axisymmetric stress analysis,

- -
2
511 511822 511833 511519
52 S..8 S..S
: 22 22833 522517
(c ][9] = 8 3.820)
€ 2
%49 533512
SYM.
2
S12
where
3E
B = — - (3.82b)
262 (14u) [1 2(§+“) %-]

For plane stress

2
(817789507 (8191uS,5) (8p5tuSy5) 0 (1-u)S;, (8 +uS,y,)

o

(522’“‘1311)2 (1-1)8 5 (S5, +u844)
[Ce][ﬂ] = B (3.83a)
0 0

SYM. 2

(=)

2
1-u) S19
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where

2
1_Q-®) 4-2, 2 H' , 5-4u , 2. 2
=g Lgo Q) g + 75 (074 0y))
(3.83b)
10u-8 _ 2
+ =g 0y Opp + 2(1-w)oy,]

Note that in both of the above cases,B = 0 if the structure is loading or
unloading elastically.

The quantity H' can be decuced from a simple uniaxial tensile test

as follows. Figure 3-3 shows a bi-linear uniaxial stress-strain curve,

Figure 3-3. Uniaxial Test

where Gy denotes the yield stress, Ep the post-yield modulus, and e the

strain. From Figure 3-3,

e, = c%;-— %)(0 - o) (3.84)
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Rearranging this gives

6=—2—e +0 (3.85a)
P y

or, incrementally

do = =B de (3.85b)

Comparing Equation (3.78c) with (3.85b) shows

H' Ep_
- E_EP (3.86)

The work reported herein assumes that the material behavior can be approx-
imated by a bi-linear model such as that shown in Figure 3-3. For this
model, the behavior can be completely determined by the quantities E, 1,
Ep’ and oy.

In summary, the Ci.

jk&
terms of Equations (3.73) and (3.74), and for elasto-plastic problems by

for elastic problems are given by the matrix

Equations (3.81), (3.82), and (3.83). Due to the incremental nature of
the formulation, many other types of constitutive relations, such as for

viscoelasticity, nonlinear elasticity, etc., could be considered.

1I1.5.5 Finite Element Formulation

The incremental finite element displacement equilibrium equations can
be derived from the virtual work statement, Equation (3.60), by interpo-

lation or node point displacements as
Auk = wik Ari (3.87)

where ¢ik are the interpolation (or shape) functions, and Ari is an incre-
mental node point displacement. The interpolating functions should satisfy
certain requirements (Ref. 43) if the numerical solution is to represent

an upper bound to the true solution. Substituting Equation (3.87) in (3.60),

and assuming the variations GAri are arbitrary, gives
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()

(kij + kij) Arj = Afi + ey (3.88a)
for each element, where
©) _ (o)
k.ij = .lf¢in,k°k2 ¢jn’2dv (3.88b)
ki = f¢ik,2 Crgmn  ®3m,n 4V (3.88¢)
v
Afi = _/;ATk ¢ik ds +-fv AFk ¢ik 4av (3.88d)

e =./.Tk(o)q>ik ds +f(1-.vk(0) by - Okﬁ(,O) ¢ik,g)dv (3.88¢)
s v

The terms given in Equation (3.88b) form the incremental geometric stiffness
matrix, and the terms of Equation (3.88c) gives the conventional incremental
stiffness matrix. The incremental loading vector is composed of the terms
of Equation (3.88d). The componénts of Equation (3.88e) are referred to
herein as residuals, since they represent the error left over from the
previous loading history. Due to the approximations introduced by the
linear incremental solution procedure, these residuals will not, in general,

be zero.

Once an element type and shape functions have been chosen, and a
material law considered, the integrals of Equations (3.88) can be evaluated,

usually in closed form. Then Equation (3.88a) becomes
©) : -
([&k*7]1 + [k])N {Ar}N = {Af}N + {e}N (3.89)

for load step N. If the finite element shape changes during the incremental
loading process prior to step N, then some approximations are introduced

in the integrations for step N. This is the case for large strain problems

in which so-called refined elements are used. However, if the element size

is kept small in the regions of high strain, the approximation introduced

should be accurate.
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Next, Equation (3.89) can be evaluated for each discrete element, and
by considering inter-element compatibility and boundary conditions, these
can be assembled into a system of linear incremental equilibrium equations

for the entire structure,
(k] + (K] {sR}, =(aF}, + {ER} (3.90)
N N N N

For load step N, these equations can be easily solved for {AR}N, the nodal

point displacements.

1IT.5.6 Solution Procedure

»

The linear incremental solution technique for nonlinear structural
response problems proceeds as follows. For the first step, the terms of

Equation (3.90) are

{ER}, = {0} (3.91a)

and since there are no initial stresses,

[K(G)]l = [0] (3.91 b)

then the linear problem
[K]l{AR}l = {AF}l (3.91c)

is solved. After this first step, and after each succeeding step, nodal
point coordinates are updated, and total displacements, strains and stresses
are computed by adding all incremental contributions. The total stresses

at the end of step N, o,,, must be transformed to o, (o) . . .
ij ij , initial stresses

for step (N + 1), by using the transformation of Equation (3.65). Note
that in this type of procedure, the stiffness matrices [K(G)]N and [K.]N
are recomputed for each load step, as indicated by the subscript N. This
is due to the fact that both stresses (which effect the geometric stiffness

matrix) and the stress-strain law (which effects the conventional stiffness

matrix) change during the incremental solution process. For loadings which
"follow" the structure, such as normal pressures, the load vector must also

be updated for each step.
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The step-by-step procedure is shown graphically in Figure 3-4, in
which R is some measure of deflection, and ¥ a measure of applied force.
Initially, AFl
balance), and the response R, = AR, computed from Equation (3.90). Note

(T)l 1
, where the superscript "T" denotes true

is applied to the structure, with ERl = 0 (no initial un-

that, in general, Ry # Rl
solution. Next, the residual ER2, i.e., the error associated with the
first incremental step, is computed, after updating displacements, strains
and stresses. This quantity can be used to check the accuracy of the in-

cremental procedure, since it represents the unbalance in nodal point

equilibrium introduced by the linearizing assumptions in the present theory.

For the second incremental step, the load (AF2 + ERZ) is applied, giving

eventually R The process is continued in this manmner.

g
F
‘ true load-deflection curve
/) |  ER,
e
//
AF, / |
7
/ |
7 I
7

) 7 |
/ T ‘
ER |
P
AF ]
I

I R

(T) ~ (T)
Ry R R, R, R,

Figure 3-4. Incremental Solution Process
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It is important to note how this method differs from the incremental
procedures outlined by other investigators. First, an equilibrium check

is automatically provided in the form of the residual vector {ER} Below

it is shown how this quantity can additionally be used, to reduce ﬁhe
equilibrium unbalance. Also, the addition of the residual vector to the
force vector, leads to displacements which are closer to the true values
than would be obtained by using only the incremental force vector. This

can be seen from the example of Figure 3-4. If just AF, is added to the

2

structure for step 2, instead of (AF2 + ERZ)’ then R2 would result, which
[ %]

is a poorer approximation to the true displacement than R2. Therefore,

the omission of the residual vector leads to a load-deflection curve con-—
siderably above the true curve, for structures which "soften" with increas-

ing load.

If the structural response is highly nonlinear, even the above procedure
will lead to computed results which are in error. For these types of pro-
blems, a Newton-Raphson iteration, which uses the residual vector, can
be employed to reduce the error in nodal point equilibrium to any desired
degree. The procedure is as follows. After {AR}N, {ER}N, etc., have been
computed for step N, all informaiton is updated. Then Equation (3.90) is
reassembled and resolved using only {ER}N as a load vector. The resulting
additional incremental deflections, strains and stresses are added to the
previous values for step N. A new residual is computed, and the process
is repeated. In fact, this iteration can be performed at constant load
as often as desired. 1In the work reported herein, the ratio of the norms

of the residual vector and total force vector

£ = (?EBLEiEB&)llz (3.92)

{ritirt

is used to control the iteration by specifying that the corrective cycling
continue until ¢ is less than some small number. Note that this process
is similar to a Newton-Raphson iteration, as can be seen from Figure 3-5.
In this figure, the stiffness matrix computed for point 1 is used to pre-
dict (ARN)l as the response to AFN, as a first approximation to the dis-
placement ARN° Next, the stiffness matrix for point 2 and the load of
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A (ERp),

4 (ERN)1 1 3 T
2
AFN
J
1
- R
Nl ey, g
ARN -

Figure 3-5. Corrective Iteration

(ER)1 is used to compute (ARN)Z’ giving [(ARN)1 + (ARN)Z] as the new
approximation to ARN. Note that (ERN)2 is much smaller than (ERN)l’
indicating the iteration is converging. After suitable accuracy has been

achieved, the next load increment may be added to the structure.

IIT.5.7 Comparison with Other Methods

In this section, it will be shown how the alternate variational
statements given in Section III1.5.3 lead to different finite element for-
mulations and solutions. By substituting Equation (3.87) in (3.69), the
incremental equilibrium equation

(ki(g;)-i- kyy + hyy + 00T = 80y (3.93a)

ig derived, in which k§§) and kij are given by Equations (3.88), and
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_ (o) ~
By *_/' kemn P5m,n fqp,k g fip,2 &Y (3.93b)
v

(o)
rij f Tk ¢jn,k¢in dv {3.93¢)
v
_ " o)
pa, = f AF, by, dV +j BT (8 + b o w0y 48 (3.930)
V. s

In Equations (3.93), hij is called the "initial displacement" matrix
(Ref. 55), which is needed only if the motion is referred to some pre-
selected fixed reference frame. Since the formulation given by Equation
(3.88a) is referred to the current configuration, hij is not necessary.
The term iy is the "initial load" matrix (Ref. 55) that arises due to
changes in the loading surface caused by deformation. Again, Equation
(3.88a) does not contain this term since the transformation of Equation
(3.66) accomplishes the same effect. The incremental load is given by
Aqi' Note that no equilibrium check or correction is included in the for-
mulation of Equation (3.93), and hence it is a Class I method. It should
also be noted that the information for "updating" the coordinates, etc.,
is contained explicitly in this formulation, and therefore need not be
done at the end of each load step as in the method presented herein

(given by Equations (3.88)).

A different finite element formulation is achieved by using the

interpolating functions in Equation (3.70). This gives

(k.. + n.gl) + ni§2)) r, = f, (3.94a)

ij ij j i

where kij is given in Equation (3.88b), and

1) _
n =2 f Cpmn Pap.m Tq Pip,n P4k,p &Y (3.94b)
v
n ) =fC ¢ r, ¢ r ¢ ¢ av (3.94c)
ij kfmn "tq,m t 'sp,k "s "jq,n Tip,R '
v
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£, = ka ¢4 kS + ka 91 AV (3.94d)

S v

Note that this is a total, rather than incremental formulation, and that
2 . . .

the matrix components ni§1) and nig ) are linear and quadratic functiomns,

respectively, of the unknown nodal point displacements. Reference 34

derives a linear incremental formulation from Equation (3.94a) as follows:

(k,. + n.(l) + n.gz)) Ar, = Af, (3.95)
ij ij ij ‘r 3 i
3
where the nigl) and ni§2) terms are evaluated at the known previous solution,

rj, of the incremental loading process. This is a Class I solution procedure.
A Class II method is used in Ref. 42 by first writing the potential energy
from Equation (3,%4a) as

(€9 (2)

T = ri(kij + n, + nij

. , = r.f, 3.96
13 )rJ r ( )

i"i
and then numerically minimizing this energy to find the unknown nodal

point displacements.

The final alternative finite element formulation that will be review-
ed herein is that of Ref. 56. 1In this work, the virtual work statement
of Equation (3.57) is considered with the exceptions that, (1) the initial
stresses are assumed to be in equilibrium, and (2) the stress transformation
of Equation (13) is included explicitly in the virtual work expression.

This is also a Class I -approach.

In reviewing this past research on nonlinear structural analysis,
it can be concluded that the new formulation presented herein has the

following advantages:

(1) It can be used for problems with physical or material, or com-

bined, nonlinearities;

(2) It checks and corrects for equilibrium at each incremental load

step;

(3) It uses current coordinates.
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In the next sections, details of the derivations of the various terms in
Equation (3.88) will be presented for several types of finite elements,

in order to eventually illustrate the present method.

I11.5.8 Linear Strain Triangle

A triangular finite element having six node points was used for the
plane strain analysis reported herein. By interpolation on six nodal
points, quadratic displacement variations, and corresponding linear strain
variations, can be admitted within the element. Several alternative
derivations of the stiffness matrices for this element will be presented,
since each derivation has its advantages. The element and its displace-

ment degrees—of-freedom are shown in Figure 3-6.

¥,V

A

Figure 3-6. Coordinates for LST

111.5.8.1 Derivation Following Felippa (Ref. 39)

The elements kij of Eq. (3.88a) can be derived very easily if the
operations are carried out in "triangular coordinates" (Ref. 39). The
triangular coordinates gl, 62, 53 are defined in terms of node point

coordinates (xi,yi), for node i = 1,2,3, as
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’EI_W —(xz V4 = X5 7,) by alj (17
{182 F = & |Gy, -x v b8, | {xt (3.972)
Lg3‘ | (%1 95 = % 1) Py az | |V
where
by = Y7V, by = ¥3-7 by = ¥ -V,
1 T 3T % 8 T X% 7% a; = x, -x B.97)
2A = ay b2 - a2 bl = b3 - a3 b1 = a2 b3 - a, b2

The shape functions for a quadratic variation in displacements in terms of

the triangular cocrdinates are

®11 = ¥ = & 257D 1 = bgp = 5y (25D

¢31 T bgy = &3 (257D % T %102 T 455

b1 T b11p T 4656, bg1 = 412 T 455,

b = 0 1=7.8..,12 4, = 0 3 = 12,6 (3.98)

where ry through Ty (Fig. 3-6) are the displacements (the A notation has
been dropped for brevity). These intérpolation functions are consistent

with Eq. (3.87), and thus can be used directly in Eqs. (3.88).

Substituting Eqs. (3.98) in (3.88c) and carrying out the indicated

operations gives

k] = [BITIN][B] (12 x 12) (3.99a)

where kij is the i-th, j-th component of the conventional stiffness

matrix fk], and
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where

[B] = - [o] ; [v] (9 x 12) (3.99b)

e
vl ! (0]
is proportional to the transformation matrix from nodal strain coordinates

to {r} coordinates. In Equation (3.99b)

-Bbl -b, —b3 4b2 0 4b3—

[u] = -b,  3b, b, 4bl 4b3 0 (3.99¢)
_fbl ~-b, 3b3 0 4b2 4b1_
—3a1 -a, -ag 4a2 0 4a3q

[vl] = -a, 3a2 ~a, 4a1 433 0 (3.994)
h:—al' -a, 3a3 0 4a2 4al_

The elements of [N] are given by
N1 Nl Iy

[N]

[sz] [N23] 9 x9) (3.99¢)

SYM [N

and h is the elemental thickness.

For the elastic case, the elements of the [Nij] matrices of Equation

(3.99e) are given by (no summation on i and j)

AP C.... C....
iijj iijj iijj
[Nij] = 2Ciijj Ciijj (3.100a)
SYM. 2C, ...
iijj
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and Ciijj are shown in Eq. (3.73), with the exception that row and column

3 of Eq. (3.73) are neglected, given

_ E 1 ..
C3333 = 7 7 A (3.100b)

1-u")
for use in Eq. (3.100a). For elasto-plastic analysis, to allow a more
accurate representation of the actual bladder behavior, the material pro-
perties were assumed to vary linearily inside the element. Then interpola-
tion can be used in the volume integration for the element stiffness matrix

as
cl = 51[0(1)] + 52[0(2)] + 53[0(3)] (3.101)

where the g, are interpolating functions and [C(k)] the stress-strain

matrix at node k. After performing the integrations, the elements of

{Nij] are
- -
ij ij ij
1 M2 M3
[Nij] = 1/10 nij nij (3.102a)
22 23
sym nij
N 33
and the nij are given by
kg

- 6 2 21N
nHo 2 2 13c®

a2 1 2y
(3.102b)

o (2 6 23c®N

il o 1 2 21ce®

ngg = {2 2 eHc®:
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where

{c(k)}T - {c(l) c?) ¢ } (3.102¢)

113 i35 idd]

The individual components C(k). are given by [Ce]([I] - []) of Eq. (3.81a),

where the third row and coli;ijare omitted for brevity.

The geometric stiffness matrix [k(G)] can also be computed using the
interpolating functions of Eq. (3.98) in Eq. (3.88b). For the case of a
linear variation in strain and constant material properties over the element,
the stresses also vary linearly. Therefore, to specify completely the
stress state in an element, three nodal values of each stress component
must be known. It is convenient to choose the stress values at the corner
nodes and designate them as O .5 0y s and T v, at node i, where i = 1,2,3.
Then the stress components in éq. (%.88b) for the geometric stiffness

matrix can be written in terms of these nodal values as
) T
S11 ={§} {Ux}
0,y =& } T4 gy} (3.103a)

where

T
o ey o)
(3.103b)
{Uy}I = { Yy, oy3}
T
{ xy} - 1 Txy,  xy, Txy3}

Using Equations (3.103) and (3.98) in (3.88b) gives the geometric stiffness

matrix as

3-43



whr ™) [ e 1] [l
|

®; = —-ﬁ——;. -—- " -—+—— (3.104)
[wl™t vl [ny]{[Jy] (v 1 [v]
where
6 2 2 2 2 1 2 1 2
[5;1 = E%GK 2 2 1 Uil + ]2 6 2 o *tH1 2 2} 4 (3.105)
2 1 2 1 2 2 ’ 2 2 6

for i = x,y,xy.

In the elasto-plastic case, both the strains and the material proper-
ties vary linearily over the element. Therefore, since the stresses are
a product of the material properties and the strains, they vary quadratic-
ally over the element. This must be taken into account when the geometric
stiffness matrix and the residual vector for each'element are computed.

Equations (3.103a) must be redefined by changing its components as follows:

T — — —
G B, 4E,E, 4EgE))
T
{6}y ={oc o o, o, 0« }
X1 % %3 X4 X5 X
{o }T ={0 o o0 o o_ o_}
T
{t } =1{= T T T T T}
Xy Xy, Xy, Xy4 Xy, X¥g XY
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where O is the stress in the x direction at node i, etc. Using Equations
(3,106),1Eq. {3.105) is replaced by

6 0 0 -2 -1
Ah
[Ji] = 180 0 -2 -1 oil + 0 0 Uiz
0 -1 -2 -1 0 -2
-2 -1 12 8
+ |-1 -2 o, + 12 o (3.107)
0 0 3 4 4
i L i
4 12
+ 4 12 8o, + 4 4 41 o, i=x,y, xy
15 ‘6
8 12 4 12

The load vector for a uniform surface pressure increment APi on side

i (the side opposite node ij can be computed from Eq. (3.88d), giving

_h
Afl =% (Asz2 + AP3b3)
Af, = B-(AP b, + AP_.b.)
2 6 171 373
Af, = E-(AP b, + AP.b.)
376 1°1 2°2
(3.108)
_54h
Af4 =% AP3b3
_ 4h
Af5 =% APlbl
_ 4h
Af6 =% AszZ

The last six elements of the incremental load vector, Af7 to Aflz’ can be
computed from the first six, Eqs. (3.108), by replacing bi with a;. The

quantities a; and bi are given in Eq. (3.97b). The first part of the
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residual vector, Eq. (3.88e), can be obtained from the above by substituting
Pi’ the initial pressure on side i, for APi. The other part of the residual
vector (neglecting body forces) can be computed using the shape functions,

giving, for a quadratic stress variation,
e, =2 (pb, + P,b,) - 2 (b, 0 O}[W, 1{_}
6 272 373 30 "1 1" "x

h :
- 30 {ay 0 O}[W){r, )

- b _h :
€y = 3 (Plbl + 1’3 b3) 30 {0 b2 0}[w1]{ox}
-0 e 03wt )
30 22 17 'xy
€ =1“—(Pb +1>b)—-—h—{00b W, 1{c }
3 =% Byby T B3y) - 55 3r o,
-2 00 a W10t}
30 8371 Ty
- 4h .
e, =B pp, - R (b,b, 0HW,IMo )
-y OMW, 1{t_ }
30 ‘%2 2 Txy
_ 4h _h -
€5 = g PyPy = 35 {0 by byW, 1o }
-2 }W, 10T}
30 (0 a3 2, W o
= 4h . .h
€6 = T PaPy ~ 39 (b3 0 byIW, 1Mo }
h
- 36'{33 0 al}[WZ]{Txy} (3.109)

where'{ox} and'{Txy} are found in Eq. (3.106), and
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"
1
[

et
]

-1
-1

e

-1 -1
2 -1
-1 2
-1 -1
2 -1
-1 2

(3.110a)

(3.110b)

-

The last six components of €; can be derived from the first six, Eq. (3.109)

by substituting a; for by, in the first term only, and {Txy} for {GX},

and {oy} for {Txy}, in the last two terms.

The formulation described above for plane strain nonlinear finite

element analysis has been programmed.

Some example problems and a detailed

description of the code will be given in latter sectiomns.
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I1I1.5.8.2 Alternate Derivation - Linear Strain Triangle

When the first load increment has been applied to a structure modeled
by the triangular finite elements of Figure 3-6, the sides of each element
will become curved. Therefore, in subsequent increments, an undesirable
error will be introduced into the amalysis by assuming the sides of the
elements remain straight. For this reason, an alternate formulation of the
linear strain triangle was considered which could be extended to a curved-
sided triangular finite element. This element could also be used to model
structures whose sides are initially curved. The derivation given below

follows closely the work of Greenbaum (Reference 57), who used the procedure

‘for axisymmetric stress analysis.

The displacements of the triangle of Figure 3-6 are assumed to be

Al
2 2| .
u(x,y) 1l x yvy x"xyvy | 0 0 0 0 0 0
< - = : < ¢ <
l 2 a
v(x,y) 0 00 0 0 O0 |1 x vy x xyV9
- o
| A12 |
(3.111a)
or
{v comt = 6 Lol {a} (3.111b)

Evaluating Eq. (3.11la) at the nodal point of the triangle gives

fr} = M {al (3.112a)
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s o

" 1 » 2 2 - . -
.3 | 1 X ¥ ¥ XYy Yy 00 0 O o 0 Al
1 2 2000 0 0 0 A
T2 Xy Yy %3 %2 Yy 2
1 2 2000 0 0 o A
T3 1 - %3 Y3 %3 %3¥3 793 3
1 2 2000 0 0 -0 A
Ty X Y4 Xy X4 Yy 4
1 2 2000 0 0 0 A
s X5 Y5 X5 Eg¥5 Vg 5
1 2 2000 0 0 o A
e Xg Yo X Xg¥e g 6
1 - = ; L (3.112b)
2 2
r, 00 O 0 0 0 1 R ER AL | A7
00 0 0 0 o0 1 2 A
i ¥2 Y2 %3 %2 V3 8
00 0 0 O 0 1x 2 2 A
9 3 Y3 X3 X33 ¥3 9
r 000 0 0 0 1 2 2 A
10 o Y4 Xy %Y, Yy 10
r 000 0 0 0 1x 2 2 A
11 5 Y5 X5 X5¥5 Y5 11
000 0 0 0 1 2 21 | a
12 *6 Y6 *6 Y676 Y6 12 J
. o . . =
Inverting this gives
-1
{al = M} (3.113)
By using Eq. (3.113) in (3.111b)
-1
{v.wb = b Gyl M7 {r} = (8] {r} (3.114)

The displacements in the element are obtained in terms of the nodal dis-
placements {r}. Therefore, the terms of the matrix [&] are analogous to

the interpolating functions given in Eq. (3.98).
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The conventional stiffness matrix can be derived by considering the

linear strain-displacement relationships

= u, + v,

(3.115)

Using Eq. (3.114) in (3.115) gives the strains in terms of nodal displace-

ments

{eGom} = NGy 10}
where
{E(X’Y)}T = {GXEYYXY}
010 2xy 0 0 0 0 O

[N(x,v0] = ]0 0 0 0 0 0 O O 1 O

0

X

0

2y

0 01 0 x 2y 0 1 0 2x v O

The stress—-strain relation is

r - - r h
Ty €1 Sz Ci3[ex
- L
1| €22 C2307 ¢y
bTny _SYM C33_ hnyJ

or

{o} = [cl{en} |

By virtual work, the stiffness matrix is

k]l = DT (g pa?t

where the stiffness matrix in {A} coordinates is

[d = th(x,ynT [CIIN(Gx,y)] dV
v

(3.116a)

(3.116b)

(3.116c¢c)

(3.117a)

(3.117b)

(3.118)

(3.119a)

and V is the volume of the element. The terms of the matrix inside the

integral are given in Eq. (3.119b).
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Let [K'] = [NG,y)1T [C] [NGo,y)] (12 x 12)

(3.119b)
Then
Ky = 0 3 o= 1,2,...,12
v = ' - 1 = ' =
a2 Ci1 K3 Ci3 Ky 2x Cp; Ky Yy €y +xCyy
1 = v = ' = ] =
K26 2y Ci3 Ky 0 Kyg €13 Ky C12
! = ' = ¥ -
Ka10 2x Ci14 Kypq xCo ¥y 63 Kyp 2y €y
K'. = ¢ K!, = 2xC K!'. = yC.+xC
33 33 K34 13 K35 13 33
1 = ' = 1 - ' =
K36 2y C33 Ky 0 Kgg C33  K3g C23
' = ' = ' =
K310 2x Cqq  Kgpy x Cyg ¥y Cqg  Kyyy 2y Cyq
Kz',z, = 4x2 Cll Kz"s = 2 C + x2 C K! = 4 C
¥ b1 13 46 XY %13
' = ' - ' =
K7 0 Kig 2x C14 K 2x Cyy
K! = 4x’ C K; = 2(}(2 C.,+xyC ) K) = 4xy C
410 13 %11 12 13 412 12
K} =y2C +X2C + 2xy C k! =2<2C + xy C
55 11 ~33 ¥ ®13 56 I %3 T XY Bag
' - 1 = ' -
Ksy 0 Kgg Yy G137 x C35 Ky ¥ Gyt x Cyq
K! = 2ixy C,, + xzc ) K} = y2C + XZC +xy C,, + xy C
510 * *13 33/ 511 13 23 12 33
K! = 2( 2 C + xy C )
512 YooY T XY b3
K! = 4y2 C K!. = 0 K, = 2y¢C K} 2y C
66 33 Ke7 68 33 Keg 23
K} = 4xy C K] = 2fxy C,, + y2 C K} = 4y2 C
610 33 Re11 23 33) K12 23
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K, = 0 3 o= 7,8,...,12
T = 1 = t =
Kgg C33  Kgg C3  Kgig 2x Cqq
7 1 = [} -
Kg11 xCyg + ¥y Cy3  Kgyg 2y Cyq
v = ' - ' =
Kg9 €2 Koy0 2x Cyq  Kgpq x Cyy +7 Cyq
! =
K912 2y Cqyy
K! = 4x?c.. K - 2(x2C + xy C ) K!
1010 33 1011 23 7 XY F33 1012
K! - X%c + viC.. + 2xy C K'. 2(xy C., +
1111 22 7Y “33 23 1112 Y %22
2
' P
Ki212 47" Cyy
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From Eq. (3.119b), only the folloﬁing integrals need be evaluated:

V=de x1=fxdv )\2=fydv
v v v
(3.120)
N, = [2av n = [ yav N = [ xyav
3 4 5
\' v A
By using a form of Green's Theorem (Reference 57) and &V = h dx dy, the
above integrals can be transformed to
V = ~h¢ vy dx N, = -h¢ xy dx A, = -h L y2 dx
1 ] 2 2
c € € (3.121)
_ 2 - 1.3 - 1.2
Ny = h](xydx N, thy dx A hfzxy dx
C C C

To illustrate how such integration can be performed, Eq. (3.121) will
be evaluated for the case of a straight-sided triangular finite element,

shown in Figure 3-7.

Figure 3-7 . Evaluation of a Straight-Sided
Triangular Finite Element
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The equation for side i is y = ¢y + s, X Evaluating these equa-

tions at the corner points gives

V9 = ¢t sxy
Vo = ¢ t81%
Yy = ¢y T syx
y3 = c2 + SZX3
Y3 = cgF s3x4
v = ez tosgxg

Solving each pair of the above for the ¢y and s gives

. = 271 e = yo-s.x, = *2¥17%172
1 xz—xl 1 17171 x2~xl

Y37V, X4Y9 X3

s = — c = y—Sx = ———:—-—-
2 x3 X, 2 2 7272 x3 X,

s - 2173 e = yo-s.x. = *1737%3%1
3 X ~Xq 3 3 7373 xl—x3

Using Eq. (3.123) in the first of Eq. (3.121) gives

2 3 1
v = —hlf‘y dx = -h./. y dx —h./' y dx —h‘[ y dx
c 1 2 3
or
*2 X3 X
-V = h j. (c1+slx)dx + h‘l. (c2+32x)dx + h /” (c3+33x)dx
%) x, X

After carrying out the operations,

(3.122)

(3.123)

(3.124)



where A is given in Eq. (3.97b).

2 2 2
(Xl + x2 + x3 + x.x, + x.x, + XX

Simarly, the other integrals are

hA

172 173 273

2
t ¥y ot ¥y, Yyt y2y3) hA

h
(xyy + %5, + x355) hA + 35 [A), (xpy; + 1y,

“2xgy4) + A32("33"2 Fx¥572xy,) + Ay +oxgyy-2x0y,) ]

1
Xl = 3 (xl + X, + x3) hA
N, = L (y.+7y.+y.) hA
2 3 W T, T Y3
= 1
Ay = 6
- 1 2 2
NS OB (yl ty,
- 1
xs 6
with
Ayy =
Agy =
Ay =

Using Eq. (3.125) in (3.119) and

tional stiffness matrix.

The geometric stiffness matrix in'{A}

using Equation (3.58) giving

1

7 (X1Y, — %y¥q)

1

2 (Xg¥3 = %375)

i (X,¥, = %X.Y.,) (3.125)
2 ¥3Y1 T %193 .

the result in (3.118) gives the conven-

coordinates can be derived by

R ¥ L e THRR U AT VA CREY
v
where
T
{u } {ul’l ul,z} = {UX uy}
{u"}T = {uz,l uz,z} = {Vx Vy}
%1 %12
[T] (3.127)
[°12 C22]
From Equation (3.11la)
{u'}l = [MGy11 [01] {a}
furl = [101} e, y1] {al (3.128)
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where

0 1 0 2x y O
Mx,y)] = (3.129)
001 0 x 2
then ) v
kg 1 = | o1 e | v (12 x 12) (3.130)
v e
" where
Kyl = [MGe,»1T 7] ME (6 x 6) (3.13La)
and the elements K'Gij are given in Eq. (3.131b).
K' = 0 j = l’2,ll.,6
G1j
K' = T K = T K! = 2x 7T
G22 11 G23 12 24 11
K! = yT1,,+xT K!' = 2y T
G25 11 12 G26 12
K! = T K’ = 2% T K' = y1._ . +xT
G33 22 G34 12 G35 .12 22
K! = 2y T
G36 22
Ké = 4x2 11 Ké = 2(xy T %2 le) Ké = 4xy Ty
44 45 46
K! = y2 ..+ 2xy 7., + X2 K' = 2 y2 T, t XY T )
G 11 12 22 G 12 22
55 56
' - 2 1
KG = 4y Téz {3.131b)
66
The geometric stiffness in r eoordinates is then
G -1,T -1
k91 - ™ &g (3.132)
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The force vector for uniform pressure can similarly be computed. For

example, for a uniform pressure on side 3 of Figure 3-7 of (P3 +-AE3)

{az®D} - on™HT {r} (3.133)

where

F, = h(Py +APY) (v, ~ ¥,)

F, = h(P; +APy (y; -y, (x + x,)/2

F, = h(Pg +4P)) (v) -vy) (v * y43)/2

F, = h(P3 +-AP3) (Yl - Y3) (x§ + xx, + xi)/3

F5 = h(P3 +nAP3) (y1 - y3) (2y1x1 + xly3 + 2y3x3 + X3Y1)/6

Fo = h(P; +AP3) (y; ~ ¥,) (yi +yyy yg)/3

F7 = h(P3 +AP3) (xl - x3)

Fg = h(Py +AP) (x; - x5 (x + x,)/2

Fg = h(By +AP3) (x) = X,) (75 + ¥,)/2

Fi, = h(B, +AP,) (x) - x3)/3

Fip = BBy +AP3) (x) = x3) (x;¥5 + 2x)7) + 2%375 + %37,)/6

Fi, = h(Py +APy) (x; - X3) (yi t oy, t y%)/B A _(3.13{;)‘

The expressions for pressure loadings on the other sides can be obtained

by permuting the indices in Eq. (3.134) as follows

Side Index Index

1
2
3

w N =

2
3
1

The other portion of the load vector, that due to the unbalance of the

initial stress field, can be deduced

T
{aRP} - - ([M]‘l) f [EG,y)1T [o1{} av (3.135)
v
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where

0102xy0 0000 0O

[E(x,y)] = 0010 x2y0102xy0
0000 00 0010 x2y
Xz o o ]
X1 % X3
[e] =] T r T
Xyl xy2 Xy3
o o [0
HR4! b 73 ]
Fg B ™ b
1 2hgy by 3y 1
fe} =4de b= L |22, b a x b
2 GTN 13 Py 3 (3.136)
£ 20, b, a y
| °3 ] | P21 P30 %3 ]

II1.5.8.3 Integrations for Curved Sides

All the above formulas would apply to an element with curved sides, as

shown in Figure 3-8 except the integrations of Equation (3.125).

2
y=Cy+ SyX + T, X

C.+S.X+7T X

_ 2
y—C‘+51X+T‘X

Figure 3-8. Curved-Sided Element
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To perform the volume integrations for a curved sided element, comsider

that the three points on side i determine a parabola

y -

C. +S.x +7T.x
i i i

2
(3.137)

The constants can be found by evaluating this expression at the nodal

points along side i. For example, for side 1,
y, = C, + 8 x + T x 2
1 1 171 171
y = C, +8.,%x, +T,x 2
& 1 174 174
= 2 (3.138)
¥, C1 + Slx2 + Tlxz

Inverting these relations gives

r -
“
S 9 = 1
« - - Z
1 (x1 XA)(Xl xz)(x4 xz)
T
- r -
A i o LR YT ATl I 2
(2,2 2 2 2 2
2 4 Xl X2 X4 - Xl of YA > (3"139)
Gy =) Gy =x) Gy mxy Yy
Eq. (3.141) 1lists all the necessary constants. These can then be used to

derive closed-form expressions for the integrals of Eq. (3.119a)

example,
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v = h[(‘.l(xz - xl) + Cz(x3 - xz) + C3(x:L - x3)
2 2,1 2 2\ 1 2 2
Sl(x2 - % )+§ S2("3 - % ) 3 S3("1 - %3 )

3 3 1 3 3 1 3 3
Tl(XZ - %y )+ 3 T2<x3 - X%, ) + 3 T3(xl - %, )] (3.140)

+

Nl

+

Wl

The other integrals can similarly be evaluated.
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Y1 % X (%y7%) =¥, %) %y (7% +y, x %, (%7%,)

Gy =) (g =) Gy 7))

( 2 2) N 2_ 2), (x 2_ 2
Y1\*2 ¥4 Yi\¥1 72 Ya\*s ™1

Gy 7x,) (%) (7))

¥ 00 7%p) = 3, G 7xp) ¥ ¥ Gy

Gy =) (e 2p) Gymxy)

Yy X3 Xg(Xg7X5) = Y5 X X3(x)x4) + y4 Xy X5(x,7X5)

(xy=x5) (x)-x4) (x5-%3)

( z—x 2) + (g 2—x 2) + (x 2— 2)
Yo\¥3 %5 Y5\¥2 %3 Y3\¥5 Xy

(xy=x5) (x)=%4) (x5-%5)

Yo (x57%3) ~ ¥5(xymxg) + ¥5(xp7xs)

(xyxg) (xy7x3) (egxg)

Yy ¥ Xg(xgxp) =Yg Xy %) (x57x)) + ¥y x5 x(x37%)

(x3_x6) (X 3—X1:) (X6_xl)

fox7) + vny?) + o)
Y3 ¥1 Xg Ye\¥3 %1 Y1\¥6 %3

Gegmx¢) Gegmxp ) (%% )

3(xg=x;) = Yo (xgmxp) + ¥, (xg7x() (3.141)

Geyxg) Geg=xy ) (xg7xy)
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IT1.5.9 DNumerical Examples

The plane strain derivation given in Section III.5.8.1 was programm-—
ed in FORTRAN IV for operation on TRW's CDC 6500 computer. The program has
the option to perform either a single fold bladder analysis, or a general
elasto-plastic, large deflection plane strain analysis. The program itself
is described in detail in a separate document. In this section, several
example problems are presented for which alternate solutions have been ob-
tained. In all cases, the computer results generated herein agree very
well with previous published solutions, giving a high degree of confidence

that the program will conduct the single fold bladder analysis accurately.

I11.5.9.1 Hollow Cylinder

To investigate the application of the theory presented herein to
elasto-plastic problems, a long cylinder subjected to internal pressure
was studied. This example was used by Ref. 49 in a finite element solution.

The cylinder had the following characteristics:

Shear Modulus G = 3,850 ksi
Inner Radius a=1.0"
Outer Radius b =2.0"
Elastic Modulus E = 10,000 ksi
Poisson's Ratio u=0.3

Yield Stress in Tension cy = 20 ksi
Post Yield Modulus Ep = 0

Yield Stress in Shear K= 11.54 ksi

A cross—-section cut through the cylinder was assumed to be in a
state of plane strain. One-quarter of this slice was modeled using 24
linear strain triangular elements. A total load of 15 ksi intermal
pressure was applied in five equal increments, and the iterative correc-

tion continued until & < .01.

Some typical results are shown in Figures 3-9, in which r is the
radius of the cylindexr. The circles represent finite element results,
while the solid lines are from Ref. 55 using the Von Mises yield criterion

and the Prandtl-Reuss flow law. TFigure 3-9a is a normalized load-deflection
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curve, where u(b) is the radial displacement measured at r = b, the outer
radius of the cylinder. In this problem, the nonlinearity is caused by
yielding which begins in the finite element model at the inner surface

r = a at a load slightly greater than P = 9 ksi (P/K = 0.78). The other
figures are plotted for the maximum load of P = 15 ksi (P/K = 1.3).

These results show that accurate solutions for displacements and stresses
can be obtained using the theory proposed herein. Note also that this
problem represents the most severe type of elasto-plastic behavior, since

no strain hardening is assumed.

I111.5.9.2 Notched Tensile Specimen

A notched tensile specimen assumed to be in the condition of plane
strain was analyzed in Ref. 49. However, in Ref. 49 constant strain tri-
angular finite elements were used, whereas the present theory has been
implemented using linear strain triangles. This problem is used to inves-
tigate the various solution procedures outlined above. The nonlinearity

in this problem is caused by localized yielding of the notched sheet.

Figure 3-10 shows the tensile strip and the finite element mesh.
Due to symmetry, only one quarter of the strip was considered. A total

tension load 0 = 30 ksi applied in eight equal increments.

Figure 3-11 shows some of the results obtained for this problem in

the form of a plot of maximum strain in the x direction versus applied load.
The solid dots represent a solution for which iteration at constant load
was performed until € 5_10—4. The circles give the results obtained by
adding the residual error to the incremental load for the next step. The

x data points show the conventional linear incremental solution. Both

of the methods for correcting equilibrium unbalance gave solutions sig-
nificantly different from those obtained by the conventional step-by-

step procedure. For this problem, the addition of the residual to the

next step ("o" in Figure 3-11) improved the strain predictions considerably
over the conventional solutions ("x" in Figure 3-11), at no additional

cost in computer time.
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I111.5.9.3 Elastic Cylindrical Bending Problem

In Ref. 36, large deflection-moderate strain plate problems were
solved by using triangular plate bending discrete elements. These solu-
tions were limited to the elastic range and compared very well with
analytical solutions given by Ref. 31. 1In particular, cylindrical bending
of infinitely long plates due to uniform pressure was considered. This
same type of plate problem was used herein to verify the theory and solu-

tion method for large deflection problems.

The infinite length plate was considered as a plane strain problem.
Figure 3-12 shows the geometry of the plate section and the finite element
grid. The width of the plate was taken as 20", and only half of the plate
was modeled due to symmetry about the centerline. The material properties

were

txd
]

30,000 ksi
0.3

and a total load of q = 5 ksi was applied in 40 equal increments., The

iteration at constant load was applied after each increment until

3 5_10_4.

? Pressure q

A% i

r
10" :i

Centerline

Figure 3-12. Plate Bending Problem
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Some of the computer results are shown in Figures 3-13 and 3-14 as
circles, with the analytical solutions from Ref. 31 represented by the
solid lines. As can be seen from Figure 3-13, excellent agreement was
obtained between the analytical and finite element solutions for deflec~-
tion at the center of the plate. Good agreement was also obtained for

membrane stresses, as measured at the center of the plate and shown in
Figure 3-14.

This plate problem also demonstrated the need to use the nonlinear
strain-displacement equations to compute elemental strains, and eventually
stresses. In Ref. 39, only the linear portion of the strain-displacement
equations was used, since in any one step, the incremental strains should
be small enough that the nonlinear terms can be neglected. However, for
the plate problem considered above, large midplane strains develop due
mostly to the rotation of this plane, and enters into the problem only

through the nonlinear portion of the strain-displacement relatioms.

T T T B! T T
- ) .
| Finite B
B Eleme?t ti250
Elastic \
N _
2 - Finite -
PO Element
@ | Classical Elasto- |
o
g N Elastic Plastic d 625
’-J — —
| 1 1 | |
0 A .8 1.2

Center Deflection, Inches

Figure 3-13. Load-Deflection Curve for Plate Problem
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Figure 3-14. Membrane Stress Versus
Load for Plate Problem

Numerical results generated by neglecting the nonlinear contribution to
the strain, even for small load increments, (0 to 2.5 ksi in 20 steps),
are considerably in error. This error was eliminated by rerunning the

same problem in 200 steps, at the expense of much more computer time.

ITI.5.9.4 Elasto-Plastic Cvlindrical Bending Problem

The elastic large deflection plate cylindrical bending problem con-

sidered above was rerun using the following changes:

E = 75 ksi
P
o = 110 ksi
y

These values were obtained by fitting a bilinear approximation to a typical
true stress—true strain curve of a low-alloy structural steel. True
strains greater than 20% were neglected in the fitting.

A total load of q = 1.25 ksi was applied to the plate in ten equal
increments, and iteration after each increment was performed until ¢ 5_10-4.
Figures 3-13 and 3-14 show some of the numerical results for this problem.
The elastic solution from above is also given for comparison in these
plots. From both figures it can be seen that considerable difference
exists between the elastic and elasto-plastic solutions for both deflec-
tions and stresses. In fact, due to the progressive yielding through the

plate thickness, the slope of the load-deflection ecurve, Figure 3-13,
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changes noticeably at a load near 625 psi. Large strains were not de-

veloped during the solution to this problem.

I11.5.9.5 Computer Running Times

All of the above examples were run on a CDC 6500 computer. Typical

run times are shown in Table 3-2.

Table 3-2 Solution Times

Example Degrees—of Running Time
Freedom (seconds)

Hollow Cylinder 130 69
Notched Strip - No 98 34
Correction
Notched Strip - 98 34
Residual Added
Notched Strip - 98 146
Iterated -
Elastic Cylindrical 51 223
Bending
Plastic Cylindrical 51 236
Bending

I1I1.5.10 Finite Element Analysis of Single Folds

During the course of this investigation, several finite element
models of single folds were devised and used to compute critical plastic
bending strains. In this section, these models will be reviewed and
recommendations for simulating the single fold will be presented. It
should be noted that all models considered herein are assumed to fold

symmetrically about the folding centerline.

I11.5.10.1 Flat Plate Loaded by Uniform Pressure

Figure 3-15a shows the finite element grid and loading for this
model, and Fig. 3-15b gives the deformed shape after a total load of 88
psi had been applied. The dimensions were chosen arbitrarily as 1/8"
thick and 1-1/2" long. The material properties of E = 300 KSI, y = 0.3,
Ep = 42 KSI, and Gy = 6 KSI were obtained by fitting a bilinear approxima-

tion to a uniaxial stress-strain curve of 1100-0 aluminum. The convergence
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Fig. 3-15a ~ Model Fig. 3-15b - Folded Bladder

criterion was € < 1.0, and a total load of 88 psi was applied in 11 equal
increments. Including the iterative corrective procedure, a total of 192
complete solutions were performed on the CDC 6500 in 174 seconds. Con-

vergence slowed down dfastically after the 11-th step, and the problem was

therefore terminated.

Table 3-3 shows the results obtained for this problem. However, Fig.
3-15b illustrates best the reason why this model is unsuitable for large
strain bladder analysis. Note that in Fig. 3-15b, the elements defined
by nodes 1-3-7 and 3-7-9 are severely distorted from their original tri-
angular shape. However, the area integrations used to derive the stiffness
matrix for this element assume the sides remain straight, and therefore
considerable error is introduced into the model due to the curving of the

sides. Dividing the region into many more elements would minimize this
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problem, but would greatly increase computer running time. In addition,
the large pressure difference across the bladder may introduce unwanted
variations in strains, etc. For these reasons, this model was not inves-

tigated further for folding strain analysis.

I11.5.10.2 Model to Check Analytical Solution

In Section III.1, an analytical solution to the "N-layered" single
folding bladder problem was presented. If the bladder is made from only
one material, and there is no internal or external pressure, the hoop

strain at the inner radius can be computed from

ao(aS + t/2)

in

e = (3.142)
as(ao + t/2)
where
t = sheet thickness
a = starting inner radius
ao = final inner radius.

This equation was plotted for t = 0.02" and a range of a values in Figure
3-16 as a solid line. The starting inner radius a; was computed from
theory of elasticity as the radius at which yielding first occurs. For

this problem, a = 14.95".

Fold Radius
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Figure 3-16 Plastic Strain Versus Fold
Radius for Sheet Bending
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Figure 3-17 shows the grid of a finite element plane strain model of

this same problem. This model was devised for two reasons: (1) to define

Centerline of Fold

yi
This Edge
Constrained
To Mbve§ e\\\
;grzz- This Edge
tion Rotated to
L "oad" Model
t = .02"

\
i

Il

4
]

]

.04"

Figure 3-17 Bladder Model

regions in which the solution of Section III.l1l is wvalid; and (2) to inves-
tigate its usefulness as a model for bladder folding. The model was
"loaded" by specifying displacements along one boundary such that this

edge remains plane and the nodal points do not move radially along this
boundary with respect to each other. This was done to simulate the "planes
remain plane" assumption in the analytical solution. The inmer radius was
computed by fitting a second order curve to the two nodal points on the
inner surface closest to the centerline of the fold. Zero hardening was
postulated to duplicate the assumptions made in the anmalytical model.

The other input quantities were

E = 10,000 ksi
= 0.33
g = 6 ksi

y -2

€ <10
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The model was loaded, starting from a radius of a_ = 18.30" (at which the
first yield occurred) to an inner radius of a = 0.0125" in thirteen steps.
Some typical plastic hoop strains obtained for this solution are shown as

circles in Figure 3-16.

As can be seen from Figure 3-16, the finite element solution agrees
well with the analytical results over a wide range of folding radii. How-
ever, far small and large folding radii, the solutions did not agree
closely. At large radii, part of the cross-section of the finite element
model was still elastic, whereas the analytic solution neglects elastic
behavior. At small radii, shear strains grew large in the numerical
model, distorting originally plane sections (except at the end boundaries).
The closed-form solution assumed planes remain plane. The shear strains
tended to relieve the hoop strains in the finite element idealization at

small radii. The thirteen steps took 376 seconds of CDC 6500 time.

This model was quite successful in duplicating the analytical solution
for the range of inner radius/thickness ratio of 5 to 100. That is, within
this range, the solution of Section III.1 is adequate, however, for a ratio

of less than 5, the finite element model should be used.

I11.5.10.3 Loading by Imposed Displacements

A finite element model similar to the above was loaded by displacing one
node as shown in Fig. 3-18. Thus the right end of the model is not constrain-
ed to remain straight as in Section IIT.5.10.2. The loading process is set
up so that the size of the increment decreases as the folding radius de-
creases. This is illustrated in Figure 3-~18 for five load steps. Also

shown is the final folded configuration.

Several computer runs demonstrated that this method of loading is
inefficient for two reasons. Firstly, the initial step for loading any
model should be such that the yield stress is not exceeded, in order to
minimize convergence problems. However, the loading method proposed in
Fig. 3-18 imposes a very large displacement during the first step, and cy
is easily exceeded at many nodes. Increasing the number of steps (and
therefore decreasing the size of the first step) was not successful because
computer’ running time went up drastically. A scheme of equal load steps

was also unsuccessful because the final step size was too large. Secondly,
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Figure 3-18 Incremental Loading

the model had to be relatively long to realistically simulate the bladder,
resulting in excessive computer running times. For these reasons, this

loading procedure was given up.

I1T.5.10.4 Final Single Folding Model

A model very similar to that described in Section III.5.10.2 was
selected for single fold analysis. This model was chosen because of the
good agreement with the analytical solution, and also because a valid
bladder folding strain analysis can be accomplished in a reasonable period

of computer time. The mesh generation, etc., for this model was automated

so that a minimum of input is necessary.
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For the single fold, the user must input the following information:

Number of layers

Number of materials

Which material is in which layer
Properties of each material
Thickness of each layer

Some variables will be set to nominal values if not entered by the user.

These are
Variables Nominal Value
Maximum Load Steps 25
Maximum Band Width 50
Length/Thickness Ratio 10

Fach layer will consist of finite element arrays as shown in Figure 3-19.

layer
thickness

. A

- bladder length

Figure 3-19 TFinite Element Layer: Single Fold

Up to ten such layers can be stacked in the y direction to simulate com-
posite bladders. The fold will be formed by rotating the free edge
(right-hand side) as in the model of Section 111.5.10.2.

Equivalent plastic strains will be computed for each node in the
bladder. The maximum of these strains in each layer will be found for

each load increment. These will then be used to compute fatigue life in
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each layer as described subsequently. In addition, an approximation to

the inmer folding radius is computed at each step.
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1171.6.0 Task 2.3: Conduct Single Fold Experiments

The following test plan was approved by JPL. These limited experi-
ments were for the purpose of guiding the theoretical analysis and provid-

ing some direct bladder fatigue information.
TEST 1

In order to support the theoretical analysis of the behavior of

folded materials, a long strip of material will be folded to bring together
the edges opposite and perpendicular to the fold. Means will be provided
to seal the contacting surfaces and to evacuate the open space inside the
folded sheet specimen. The thickness and rigidity of the specimen will

be chosen to produce minimum or no plastic strain before evacuation but

to produce considerable plastic strain at 15 psi pressure difference. The
spacing of grid lines drawn parallel to the fold will be measured with the
2-component microscope when the sheet is flat, when folded but not evacua-
ted, and for various amounts of pressure difference applied to the folded

and sealed pocket. (See Fig. 3-20)
TEST 2

A correlation will be made between the strains produced by test 1
above,vhich is amenable to theoretical analysis, and the strains produced
by compressing folds between parallel jaws. This will provide a tie-in
between the computed situations prevailing in item 1 above and the fatigue

tests of item 3 below.
TEST 3

Apparatus for low-cycle fatigue testing will be devised for subjecting
single folds to compressions correlated to items 1 and 2 above and for
compressing double folds to primary-fold radii having such correlation.

The secondary fold of the double-fold tests will be controlled and related,
through the primary-fold radius, to the simpler tests and to the theoretical

computations.

The folding operations will be duplicated with sufficient accuracy to
insure that each fold repetition is free to occur at the same position on
the material. One cycle is to be measured from the flat configuration.

Examination of the condition of the material will be made after each of
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the earlier cycles and less frequently during the later cycles, when a
longer test is warranted. Examinations will be based on surface condition,
penetration as determined by electric spark or other appropriate techniques,

or loss of strength when subjected to tension or pressure.

Uniaxial fatigue tests will be conducted using the same material as
in the folding-unfolding tests. Thus information can be generated to
verify any theory which seeks to use uniaxial fatigue test data to inter-

pret multiaxial fatigue strains in bladders.

However, after several computer runs, it was concluded that the 15
psi pressure difference across the bladder in Test 1 was not adequate to
produce large folding strains. Therefore, the static single folding device
was redesigned. This new folder allowed tests 1 and 2 above to be combined

and is described in the following section.

I1I.6.1 Static Single Folding Device

A device has been designed and built which will allow controlled
single folding of sheet specimens. The folder, shown in Fig. 3-21, applies
forces to the end of a sheet to create the fold. No bending moments are
transmitted to the sheet, since the jaws gripping the ends of the sheet
are mounted in bearings and are counterbalanced. Thus analysis of this
type of fold is straightforward using the plane strain finite element

program.

Figure 3-21 Single Fold Device
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The single-fold bending fixture was developed to apply well-defined
constraints to a specimen and to determine the configuration. Using pivot-
ed end (zero bending moment) loading of a wide flat column of the flexible
material, the pivot axes were brought together to various spacings and the
resulting outside bend radius was measured. Since such a buckled column
does not bend to a configuration characterized by a single value of the
radius, the equivalent rédius of a 60° arc of the material was determined.
A measuring fixture was constructed to determine this equivalent radius by
use of three lines of contact at the ends and at the center of the 60°

arc.

The single-~fold bending fixture allows convenient access to the convex
surface of the fold for the purpose of measuring strain between contour
lines. For short, thick specimen of soft materials, the exterior radius

r/t ratio can approach 2.

Figure 3-22 shows the type specimen used in the single fold device.
In this figure, the following quantities are defined:

Centerline

—

Figure 3-22 - Single Fold Test Specimen
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= length between free ends
original %

= gheet thickness

R ot o
[}

= equivalent radius of a 60° arc of material for
minimum radius

The specimen is "loaded" by decreasing the distance between free edges

from the initial 20 to %. TFor each increment of load, r is measured over

a 60° arc by fitting a special gaging device to points 1, 2, and 3. The

distance d is determined by calipers as long. as d > (2 + t).

Figure 3-23 gives results obtained for two different thicknesses of
low-density polyethylene sheet. The solid dots in Fig. 3-23 are for
t = 0.125" and L, = 4,0", while the solid triangles are for t = 0.252"
and o = 3.652". The circles are from a finite element solution and will

be discussed in a subsequent section.

1.0 .9 .8 .7 .6 .5 N .3 .2 .1 2/20

Figure 3-23 ~ Single Fold Results
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1I1.6.2 Uniaxial Tensile Tests

In order to duplicate the results of the above section using the
finite element computer program, uniaxial stress-strain curves of the
materials of interest were obtained. Since such tests are straight for-
ward, only the final results will be presented here. The low-density
polyethylene specimens were 1/4" thick and 1/2" wide, while the cellulose

acetate butyrate specimens were 3/32" thick and 1/2" wide.

The stress-strain plots showed that the characteristics of low-density
polyethylene can be represented by a bi-linear approximation with a
modulus of elasticity of about 15,000 psi joined by a line of constant
stress of about 1,080 psi. The bi-linear approximation for cellulose
acetate butyrate is about 180,000 psi for the modulus of elasticity in
the initial-strain region and a 4,000 psi constant stress in the plastic-

flow region.

IT1.6.3 Single Folding Fatigue Tests

Two versions of a single~fold fatigue fixture were built and tested.
These fixtures were made for use in the Research Incorporated programmable
loading machine. A cyclic programmer was added to this machine for con-
trolling the time in which the fatigue specimen was held in a folded
condition and the time in which it was held in the straightened condition
after opening the fold. The first fixture allowed the machine to pull
the specimen approximately to a straight and unbent condition between
folding cycles but the folded condition included two 90° bends in addition
to the 180° fold between parallel jaws. After preliminary tests, the
second single-fold fatigue fixture was prepared to eliminate the 90°
bends and to provide a smooth and very gradual rolloff of the parallel
jaws. This rolloff, well within the specimen width, prevented premature
fold damage at the edge of the specimen. The recorded data on single-
fold fatigue tests was obtained with the second fixture. Figure 3-24

shows the experimental setup.
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Figure 3-24 - Single Fold Fatigue Test

Table 3-4 gives a summary of the test results.

Table 3-4 Folding Fatigue Results

Material Radius/Thickness No. Cycles
of Fold

Cellulose Acetate Butyrate 4 5

Cellulose Acetate Butyrate 6 10

Teflon 2.5 2100
(continued from 2100 cycles) 2 1780

S/N 31269 JPL 103 2.5 2320
(continued from 2320 cycles) 2 1160

Condition

Failure

Failure

No
No

No
No

Failure
Failure

Failure
Failure

The fatigue testing equipment was intended for use with materials and

bend radii which exhibit low-cycle, fatigue damage. Tests have ranged from

folding cellulose acetate butyrate between a jaw spacing of four times the

thickness (4t), which produced a hole after five cycles, to folding Teflon

to 2.5t for 2,100 cycles and then to 2.0t for 1,780 cycles without failure.
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I1T1.6.4 Conclusions

The experimental investigation to date has been primarily devoted to
the development of testing techniques. This included development and use
of single-fold fatigue fixtures, a single-~fold bending apparatus, and a
radius-measuring fixture. An investigation was made of various sheet
materials that might be used as thick-sheet models of other sheet materials.
In developing techniques for the use of such materials, data was obtained
on single fold fatigue performance, on the characteristics of single-fold

bends, and on the stress-strain characteristics of the materials.

Although extensive measurements were not performed during this program,
considerable progress was made in the development of experimental tech-
niques. The test fixtures will be retained and the laboratory capability
will be available for future investigations of materials that are subjected

to large strains causing plastic flow.

It should be noted here that the general shape of the curve of Figure
3-23 will be similar for teflon and other plastics. Polyethylene was used
in the actual static folding tests reported herein since it is much less
stiff than teflon. That is, the static folder could not fold a sheet of

teflon of the thickness required to reach low r/t ratios.
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I11.7.0 Task 2.4: Compare Theory and Experiment-Single Folds

In order to verify the finite element theory and coding for single
fold analysis, the test specimen shown in Fig. 3-22 was modeled using the
code developed in Section I1I.5. The finite element model simulated half
of the sheet, contained sixteen plame strain elements and 102 degrees-of-

freedom, and is shown in Fig. 3-25. The left-~hand nodes (along the center-

line) were constrained to move only in the vertical direction, and node

b

Centerline of Fold

/2 = 2"

Figure 3-25 - Single Fold Test Model

50 was constrained to move only in the horizontal direction. The model
was '"loaded" by moving node 50 toward the centerline. To avoid Euler
buckling, the sheet was given a slight initial curvature of a sin‘% (% - x)

with a = .1", along the bottom surface.

The material properties were obtained from a uniaxial tension test
(described in Section I11.6.2) as E = 15 ksi, p = .35, Oy = 1.1 ksi,
EP = 0. The load was applied to the finite element model in 77 equal
increments of 0.02"/step, giving a final 1/20 value of 0.23. Such a
small step size was found to be necessary to successfully avoid the buckl-

ing instability as the sheet was initially loaded. The load-deflection
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curve obtained by the finite element solution is shown in Fig. 3-26. The

horizontal line at a load of 1.71 #/in represents the conventional elastic
Euler buckling load. The sheet began to yield at l/lo = .55, chaﬁging

the slope of the load displacement curve. The problem took 16 minutes of

CDC 6500 computer time.

A

2.2
2.0
1.8
1.6
1.4
1.2
1.0

.8

End Load, #/in.

oo
1.0 .9 .8 .7 .6 .5 4 .3 .2 2/20

Figure 3-26 - Load-Displacement Curve

Some of the finite element results are shown in Fig. 3-23 as circles.
As can be seen by comparing the finite element results (circles) to the
experimental results (solid dots and line), excellent agreement was
obtained, particularly in the critical range of low r/t ratios. In

addition, the following comparison was also made:

2/20 d/t (see Fig. 3-22)
Experimental Finite Element
0.4 14.2 13.9
0.3 11.9 11.7
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I11.7 Conclusions

In view of the excellent agreement between the finite element plane
strain results and the experimental results shown above, and the fine
comparison between previous published solutions and finite element solu-
tions in Section III.5.9, no "refinement" of the finite element theory
and coding presented herein is necessary. The present computer program
should be capable of accurately predicting single folding strains in

composite bladder structures.
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III.8.0 Task 2.5: Rolling Single Folds

A quasi-static analysis of a rolling single fold is proposed herein.
In this type of analysis, a complete single fold is first formed, using
the plane strain finite element computer program to predict strains,
stresses, etc., during the formation of this fold. The program is then
interrupted, and the resulting information is stored on tape and disk.
Next, the loading sequence is modified so that in the next series of load
increments the folded sheet is "rolled" by moving one free edge relative

to the other. This process is illustrated in Fig. 3-27.

Sheet is Progressively
Starting Sheet Geometry Folded

' ""’/j\

Final Static Single Fold

() -

|

\ "Rolling" Effect Created
by Moving One Edge With
Respect to the Other

Figure 3-27 -~ Simulating Rolling Fold
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The information stored on tape or disk is necessary to start the "rolling"
process, since the pre-rolling stresses and geometry must be considered

in the finite element model.

This task was not emphasized herein, although the computer program
can perform the above mentioned'analysis. Rather, the rolling double
fold, which creates a much more severe environment for the bladder, was
modeled in detail using a procedure similar to that of Fig. 3-27. This

analysis is described in detail in a latter sectiom.
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I11.9.0 Task 2.6: Estimate Fatigue Life of Single Folds

In this section, the method coded into the finite element plane strain
computer program to estimate fatigue life cycles to failure N after plastic
folding strains have been computed is reviewed. These computations lean

heavily upon the methods of Sections II and III.5.

Since almost all fatigue tests are uniaxial in nature, whereas the
state of strain in a folded bladder is multiaxial, a method for converting
the multiaxial strains intc equivalent uniaxial strains is necessary.

This is accomplished herein using Eq. (2.9). The result is an equivalent
plastic strain at each node of the finite element model, computed at the
completion of each load increment. A search over all nodes is conducted

in order to locate the maximum equivalent plastic strain ep. This strain

is next used to compute fatigue life N from Eq. (2.7), which can be re-

arranged as

e
_{_p S
N = (M ) : (3.143)

where Mi and z, are constants for material i, computed as described below.

. The quantities Mi and z, can be obtained by the program in two dif=-
ferent ways. In one method, the user may input these numbers directly
gfter having computed Mi and z; by the methods éf Section 1I1.2.2.1.1, or
by any other means at his disposal. Alternately, these quantities can
be computed by the program by using a "least-squares" fit to data input
to the program. Noting that log-log plots of ep versus N for most
materials are straight, or nearly straight, lines motivated the least-
squares computation for Mi and Zg. For example, assume that the user
inputs ePl and epz, and correspondign Nl and N2 (obtained from fatigue
tests). If Eq. (3.143) is valid, then

fue

fuM, +z, fulN
Py i i

1
(3.144)

fu e

fu M, + z, fu N
Py i i

2
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Solving Eq. (3.144) for M, and z; gives

M, = EXP
1

,QuN2 ,Quep ~ ﬂuNl fue

p
lN 2 (3.145a)
2 2
1
eP
fu —2
e
Py
= (3.145b)
2
fu N
1

By following a similar line of reasoning, if the user wishes to input

values e , e, ... ep and corresponding Nl’ NZ’ .o Nn’ a least-squares

P
fit givesl 2 o

n 9 n n n
[Z(ﬂuN.) ][Zlue ]f[ZluN.][Zlue fu N,]
N S S - S =0 3 4= Py
M. = EXP (3.146a)
i n 2 n 2
n Y - (X fu X))
i=1 =1
n n n
nz fue  fu N, - [Z fu N.][z fue ]
T L L = S R s S
z;, = " > - 2 (3.146b)
ny, (Qu N - (3 fu N,

j=1

Note that for n=2, Eqs. (3.146) reduce to Eqs. (3.145). To illustrate the

program, and its use for folding fatigue life calculations, several ex-

ample problems are presented in the next section.

I111.9.1 Fatigue Examples

Two different materials, teflon and aluminum, were used in the sample

single fold fatigue life calculations. Table 3~5 gives the fatigue in-—

formation for each material, and the original source. The purpose of this

study was to investigate the sensitivity of the life cycle predictioms
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Table 3~5 Uniaxial Fatigue Data

Material epl Nl Epz NZ M z Source
(% (%)

Aluminum 28 10 18 104 .916 -.515 Table 2-1

Teflon 81 10 55 103 .983 -.085 Table 2-2

to variations in material properties and finite element model geometry.
The thickness of all bladders considered was t = 0.02". Table 3-6 gives

the results of this investigation.

Table 3-6
Material Time No. Length D.O.F. E u oo E Rt/t e N
‘(sec.) Layer (in.) (KS1) (Kgl) (ESI) (2)

Teflon 62 1 .06 42 7 .35 2 0 1.43 6.97 Large
Aluminum 69 1 .06 42 200 .33 10 33 1.59 16.05 29
Aluminum 103 1 .04 30 10000 .33 6 1400 1.18 21.04 17
Aluminum 244 2 .02 50 10000 .33 6 0 1.53 28.74 10
Aluminum 138 1 .06 42 10000 .33 6 0 5.70 7.21 140
Aluminum 108 1 .04 30 10000 .33 6 0 1.18 19.65 24
Aluminum 46 1 .02 18 10000 .33 6 0 1.41 17.00 26

The second column in this table gives the CDC 6500 computer running time.
The third column gives the number of finite element layers through the
.02" thickness, and column four shows the length of the model. The next
column lists the number of displacement degrees-—-of-freedom in the finite
element model. The tenth column shows the ratio of the final inner radius
to the thickness, denoting the severity of the fold. The last two columns
give the maximum equivalent plastic strain in percent, and estimated

folding fatigue life.

Several conclusions can be made from the results of Table 3-6.
First, the fatigue life of the aluminum bladders is relatively insensitive
to material properties and finite element model mesh. The life is, how-
ever, strongly dependent on the sharpness (Rt/t) of the final folding

radius. Secondly, the teflon bladder has an almost indefinite fatigue life.
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Iv.0 TASK 3.0: DOUBLE FOLD ANALYSIS

The double fold (Figure 1-1) is observed to occur during expulsion of
bladders. This fold is formed by applying either compressive loads or
moments along the length of a simple fold until local buckling occurs. In
other words, the double fold can be visualized as a buckled simple fold.
Before outlining the method for determining strains in double folds, the
basic physical behavior of such folds will first be discussed. In the
discussion which follows, the term "primary fold radius, Rp," refers to
the radius of the simple fold in the buckled region of the sheet (see
Fig. 1-1). Similarly, the "secondary fold radius,_RS," refers to the
radius of the double fold in the buckled region.

To obtain soﬁe insight into the behavior of the double fold, a piece
of mylar was doubly~folded and studied under a microscope. This simple
experimental study took less than an hour to perform yet contributed signi-
ficantly to an understanding of the double fold. It is experiments of this

type which have been used to guide the analysis and point the way to

simplifying approximations for the mathematical model. The major effect
observed in this experimental study was that the primary fold radius (Rp)
is reduced to nearly zero when a simple fold is bent to form a double fold.
This effect shows the appearance of yie}ding zones due to high tensile

stresses which relate to the primary fold radius.

The reason that the primary fold radius is reduced when the sheet is
doubly~folded can be readily explained, since the physical problem is
analogous to the behavior of a toroidal shell acted upon by bending loads
(See Reference 58). Figure 4-1 shows a portion of a toroidal shell being
subjected to a bending moment; the analogous bladder problem is a simple
fold that is being doubly-folded. From this figure, it can be seen that
the circled region of the torus corresponds to the primary fold in the
doubly-folded sheet. Similarly, the large radius of the torus is equivalent
to the secondary fold radius of the sheet. "It is reasonable to expect that

the doubly-folded sheet will deform in a manmer similar to the bent torus.



h, thickness

gimilar to a
simple fold

R % primary radius
" scecondary radius

R
h ~ thickness
p,, v equivalent pressure

A, Bendlng of a Torus

B. Bending of a Simple Fold to Form a Double Fold

Figure 4~ 1 Bending of a Torus and a Double Fold

Then the torus is subjected to bending moments, the cross-section of
the torus tends to flatten out, as shown by the dotted line in Figure 4-~1.
This flattening action takes place because the stresses caused by the
bending moment give rise to force components which act in the plane of the
torus cross-section. Reissner (Reference 58) has shown that these force
components are equivalent to pressure forces which act in the vertical
direction and tend to flatten the cross-section. The pressure is related

to the bending stress by the relation

p =b (4.1)

where h is the thickness of the torus, RS is the radius of curvature of
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the bent torus, and o is the stress due to the applied bending moment.
Note that o is positive (tension) on the top portion of the cross-section
(away from the center of curvature )and ¢ is negative on the bottom half
(compression). Thus, the equivalent pressure P, acts as shown in Figure

4-1 to flatten out the cross section.

In a similar manner, bending of a simple fold to form a double fold
gives rise to equivalent pressure forces which cause the primary fold
radius to become very small. The cross-section of the simple fold becomes
flattened out, just as in the case of the torus. Thus we can conclude
that the radius of the priméry fold is dependent upon the stresses and

curvature of the secondary fold.

Reissner's study (Reference 58) was performed for the case when the
torus is considered to be a thin shell (i.e., where h/RS << 1 and Rp << RS).
Consequently, Reissner assumed that the radius of curvature, R, of the bent
torus is the same for every point on the cross—section. For the double
fold problem, however, this assumption is not valid. 1In fact, one can
show that the different radii of curvature (for different points on the
cross—-section of the primary fold) lead to an upward resultant force that

causes a rubber sheet to bend upward when it is doubly folded.

In Reference 5 this upward deformation was attributed solely to anti-
clastic behavior (Poisson's ratio), and no mention was made of the
mechanism described here. The proof that this upward bending is not due
to anticlastic effects can be seen from the rubber sheet. On the right
half side of the sheeté, anticlastic effects do occur, and a small ‘
upward bending is noted. On the doubly-folded side, a much larger deflec-
tion occurs. 1If the vertical deformation of the double fold was due solely
to anticlastic effects, one would expect the deflections on the left and
right to be nearly equal. Thus it appears that only a small part of the

upward deflection of a double fold is due to anticlastic behavior.

From the preceding observations, including the analogy with the
bending of a torus, a method for analyzing strains in a stationary double

fold becomes apparent. The finite element technique (similar to the method

proposed for simple folds) can be applied. In studying the simple fold,
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the basic triangular element is taken to be infinite in length (normal to
the paper) and a plane strain analysis results. For the double fold
study, however, a ring-shaped triangular element will be employed. This
element is simply a circular ring with a triangular cross-section, and it

is commonly used to analyze axisymmetric bodies (Figure 4-2).

Simple tests on Mylar specimens shown that in the neighborhood of

the double fold, plane sections (in the 6 = constant direction, Figure 4-2)

remain very nearly plane. In fact, the 6 = 0 plane is a plane of symmetry,
so it cannot deform. Thus, in the immediate locality of the double fold
(where the strains are a maximum) the stresses and strains are independent
of the angle 6. 1In this case, the equations of equilibrium become iden—~

tical to those for an axisymmetric problem, i.e.,

90 oT o) g
r

rx r - ©
or + 90X + T 0
and (4.2)
Brr o Tr
Xy 24X
or ox r

where x 1is the axial coordinate
r 1is the radial coordinate

and 8 is the circumferential coordinate

Note that r is related to RS, the secondary fold radius. The finite element

model and the coordinate system are shown in Figure 4-2,

With the assumption that plane sections remain plane in the vicinity
of the fold, it thus becomes clear that the double fold problem can be
analyzed. The finite element technique outlined here will be used to in-
clude large deformation effects and nonlinear material properties. It
is recognized, however, that the assumption of plane sections may break
down when the secondary radius RS becomes very small (i.e., when RS < h,
the thickness). In this case, the planes (6 = constant) may deform, and

the shear strain Ypo MaY become important.



Ring~-Shaped
Finite Element

Figure 4-2. Finite Element Idealization of a Double Fold

The axisymmetric finite element used herein for double fold analysis
is a direct outgrowth of the plane strain element presented earlier. Both
the strains and material properties are assumed to Vary linearily with the
element. The detailed derivation of the elemental characteristics are
given in the following sections, and represent a significant contribution

to the state~of-the-art in axisymmetric finite element analysis.



Iv.1 Task 3.1l: Axisymmetric Finite Element Model

As in the plane strain analysis, two alternative derivations for
the six node axisymmetric finite element are given herein. The first
derivation follows Reference 39, and introduces approximations which
simplify the analysis. The second derivation is more rigorous and is used
to assess the accuracy of the first formulation. The coordinate system
for both formulations is given in Figure 3-6, in which r replaces x,

z replaces y, and w replaces v.

IV.1.1 Derivation Following Felippa

In the following formulation, the hoop strain e, is assumed to vary

‘ 6
linearily over the element. This approximation greatly simplifies the

elemental area integrations, and will be discussed in a subsequent section.

The convention stiffness is derived from Equation (3.99a), in which
[B] is redefined

101 | 101 ]
R e
e (
B] = |—— _—— 12 x 12)

[R] ‘r (0] (4.3a)

[v] | [u]

where [U] and [V] are given by Equations (3.99¢) and (3.99d) and

2A/rl 0 0 0 0 O

[R] = 0 2A/r2 0 0 0 O
(4.3b)

0 0 2A/r3 0 0 o0

and is due to the hoop strains. In Equation (4.3b), T, is the radius to

corner nodal circle i.



The matrix [N] is given by

ENRRCRRUNRE

(Nppd | N3] | [Ny
.

[N

IN] = ——

72A I [N33] I 34] (4.4a)

SYM. | ! | [N44]_

The elements of the (3 x 3) submatrices [Nij] are given by Equation (3.102a)

and
i3
npy = { (12r,+37,#3z,) (3r +2r 4r,) (3rtr +2r )}{C(k)}
ij _ (k)
nyp = {(3r +2r +r3) (2r +3r 3) (r1+r +r3)}{c }
1y _ (k)
N3 {(3r1+r2+2r3) (rl+r2+r3) (2rl+r2+3r3)}{c }
nij = {(2r +3r,+ r,) (3r,+12r +3r.) (t,+3r +2r )}{C(k)}
22 3 1 2 3 1 2 3
i3 _ (k)
53 {(r +r +r3) (r1+3r2+2r3) (rI+2r2+3r3)}{C }
nij = { 2r_ +r +3r.) (r,+2r +3r.) (3r. +3r. +12r )}{C(k)}
33 172 3 1 2 3 1 2 3
(4.4b)
where Equation (3.102c¢) gives {C(k)}, and Section II.5.4 gives the particular
c®) .
iijj

—_ | — — (12 x 12) (4.52)



] | b | ol vl
_ T | — T LTV -
)= [t o™ fo| o | o T on v )
(o) | Lol | 5 | [[r]
N
ARt EEIRE
(kg 1 = EU]T ‘| [V}T] T = (4.5¢)
2 SRS
The [Ji] matrices, for i = r, z, 6, and rz are
(36r1+3r2+3r3) (31'1 2r2 —r3) (31-l -, —2r3)
2m
351 = 50408 (-2r; -9r, -3ry)  (-Ty -3r, ~3ry) |(0y)
SYM. (--2r:L —3r2 —9r3)
T:er —2r2 —3r3) (—21:l + 3r2 —-r3) (—3rl I, —3r3) ]
+
(3r:L + 36r2 +3r.,) (—rl + 3r2 —2r3) (fji)2
LSYM,. (-—3rl —2r2 —9r3) B
_.(—91'1 —3r2 —2r3) (--31:l —3r2 -r3) (—2rl -T, + 3r3)
+ (—3r1 —9r2 —2r3) (—:t:1 --2r2 +3r3) (ci)3
__SYM. (3r1 + 3r2 +36r3)_
_‘(12r + 6r. + 3r.) (6r, + 6r, +2r,) (3r, + 2r +2r..) N
1 2 3 1 2 3 1 2 3
4 (61::L + ].2r2 + 3r3) (2rl +3:r2 + 2r3) (01)4
| (21:l + 2r2 + 3r3)__
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(3r1 + 2r2 + 2r3) (2rl + 3r2+2r3) (Zrl + 2r2 + 3r3)
+4 (3r1 + 12r2 + 6r3) (2rl + 6r2 + 6r3) (oi)5
. (3rl + 6r2 +12r3) N
(12¢. +3r. +6r.)  (3r, + 2r, +2r.))  (6r.+ 2r, + 6r.) ]
1 2 3 1 2 3 1 2 3
+4 (21:l + 3r2 + 2r3) (2rl + 21:2 + 3r3) (oi)6
| (6rl + 3r2 + 12r31_
(4.6)
where (oi)j is evaluated at node j.
The load vector for uniform pressure is
2m
Afl = 7;—r1(AP2b2 + AP3b3)
- 2r
Af2 =5 rz(APlbl + AP3b3)
_2r
Af3 —' 6 r3(AP1bl + APZbZ)
M (4.7)
Af4 = ji-(rl + r2) AP3b3
R 27r
Af5 =3 (r2 + r3) APlbl
_ar
Af6 =3 (r1 + r3) Aszz

where the last six components are obtained from Equation (4.7) by replacing

bi with a, . The other part of the residual vector (neglecting body forces)

can be computed using the shape functions, giving, for a quadratic stress

variation,



2ﬂr1

€ = -7;—-(P2b2 + P3b3) 360 {b 0 0}[w ]{o }
_2m 2T1A 1
-~ 360 {a 0 O}[Wl]{'rrz} - 50 {— o0 0}[W2]{Ge}
21rr2
€, = —7;—-(P b, + Pjb ) 360 T {0 b, 0}[w ]{0 }
2TWA
360 {0 a, 0}[W ]{T } 790 {0 — L, 0}[W ]{0 }
Zﬂr3

™
|

3=~ (b, +Pby) - 360 {0 0 b 3w, 1o}

- 2200 0 agbw e} - 22 (0 0 }[w 1{o,}
e, =53 (r; + 1)) Piby - 355 {bb, 0}[W,1{c }
360 {a ay 0}[w ]{T }
€5 = ——-(r +r ) P.b, - 360 {0 b, 2}[W2]{or}
360 {0 a 5 W, 1T}
€g = (r + r;) P,b, 360 {by 0 b o W, 1o
360 {ay 0 a }w,]{r_} (4.8)
where
{or}T = {or o, 0. 0 0 O } (4.9)

etc., and o is evaluated at node i. The last three elements are
obtained from Equation (4.8) by using {orz} in place of {or} and {oz} in
place of {o__}. )

rz
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The matrices [Wll and [w2] are

(18r +3r +3r

13ty 3) (—5r1—6r2-r3) (—Srl—r2—6r3)
[Wll = (—6rl—5r2-—r3 (3r1+18r2+3r3) (-rl—5r2—6r3)
_f—6rl-r2-5r3) (—rl—6r2—5r3) (3rl+3r2+18r3)
(24r1+8r2+4r3) (4r1-8r2—8r3) (24ri+4r2+8r3)——
(8r1+24r2+4r3) (4rl+24r2+8r3) (~8r1+4r2—8r3)
(—8r1-8r2+4r3) (4rl+8r2+24r3) (8rl+4r2+24?3);_
B 241 (—8rl-4r3) (—8rl—4r2)
[Wz] = (—8r2—4r3) 24r2 (-4rl—8r2)

L£—4r2—8£3) (—4r1—8r3) 24r3
(48rl+32r2+16r3) (16rl+16r2+l6r3) (48r1+16r2+32r3)
(32rl+48r2+l6r3) (l6rl+48r2+32r3) (16r1+16r2+l6r3)
(16r +16x o +1675) (A6r,+32r 2+48r3) (32r1+16r2+48r3)
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Some preliminary computer results for a thick axisymmetric cylindrical
shell indicate that the element described above produces numerical results
that are slightly in error. It is felt that the error is caused by assuming
the internal hoop strain varies linearily over the element, i.e.,

1,, 2,,. '3

3
+ £
1 2r, 314 (4.11a)

This assumption considerably simplified the volume integrations over each
element. However, to be consistent with the assumed displacements, the

strain should be

o &l (251-1)u1+£2(2§'2—1)u2 + g3(zg3-1)u3+4glg2u4+452g3u5+4g1g3u6
¢ E1F1 +eoTy HEgTy

(4.11b)

which is obviously not linear in the coordinates gi. Using Equation (4.11b)
would lead to integrals which would be very difficult to evaluate in closed

form.

To attempt to reduce the error noted above, another assumption was

tried for the hoop strain, namel§

e = £1(26071) T+ £,(26,-1) ==+ £,(26,-1) =2
1 2 3
- u u
_ﬁ_ 5 u
+4gE, T, + 48524 T, +4g185 6
Te (4.11c)

This allows a quadratic strain variation by interpolating on all nodal
strain components. However, there was very little difference in the results
obtained by using Equation (4.llc) in place of (4.1la). Therefore, the

final coding is based upon the simplier assumption, Equation (4.1la).
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Iv.1.1.1 Modeling and Loading Double Fold

In studying the double fold, an axisymmetric finite element model

is intended. A sketch of the model is shown in Figure 4-3.

I The co-ordinate directions are
r,0, and z, with the corresponding

displacements u, v, and w.

Figure 4~3 Axisymmetric Finite
Element Model

In order to completely specify the problem, it is necessary to
apply the proper boundary conditions and to define the applied load-
ing. It is the purpose of this section to discuss these loading and
boundary conditions and to show how they will be incorporated in the

finite element model.

Iv.1,1.1.1 Boundary Conditions

In specifying the double fold problem, the following boundary

conditions will be applied:
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(a) Along the plane z = constant = z

O,z = 0 (no normal stress)

Ty = 0 (no shear stress)

These boundary stresses will be input directly to the finite

element program. In addition, since the problem is axisymmetric,

we will also have Tog = 0 along z = 2z

(b) Along the plane © = 0

v =0 (no circumferential displacement)
g 7 O

u, w free (no restriction on these displacements)

(c) Along the outer surface r = router(z)
=20
Y ,
no stresses applied
T = 0
rz

These boundary stresses will be input directly to the finite
element program; since the problem is axisymmetric, we will also have

T = 0 along this outer surface.

(d) Along the inner surface, r = r {nner (2)
o =90
Y
no stresses applied
T = 0
rz

These boundary stresses will be input directly as in part (c)

above; again T = 0 along this surface.

(e) Along the plane © = constant = 0

b

u, w free (no restriction on these displacements)
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J;GBdA = J];ee drdz = F6 = 0 (no net force in the 0 -
' : direction)
-+
J;eerdA = J];eerdrdz = Mz (moment about the z - axis)
.+
_{GGOZdA ~‘l];eezdrdz = Mr = 0 (no net moment about a

radial line in the plane

0 = Oo)

These boundary conditions can be satisfied by the axisymmetric
finite element model. The zero stress conditions can be met directly
by the model, but it is necessary to investigate ﬁr’ ﬁz, and Fe
further. These boundary forces will be discussed in the sections

which follow.

Iv.1.1.1.2 Satisfying the Boundary Conditions on © = 90'

To demonstrate thatjoee dA = 0, consider the following:

For an axisymmetric body, the equilibrium equations are (Ref. 8)

acrr + aTrz + %r %00 -0 (4.122a)
ar 9z r
9T o] T
and rz + _"zz + _rz (4.12b)
= O b
ar 9z T
Solving equation (4.12a) for Tgqs We can write

ot e (e

Integrating these terms gives

T =T
outer
= dz +
oeedA f mrr J T,

Ty 1
nner (4613)

where the inner and outer radii are shown in Figure 4-~4 along with

]
N

z1 and Z,e
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By considering the boundary conditions Orr = 0,

=r
outer
o = 0, etc. of Section 1IV.1.1.1.1
rrl
= rinner
AT
T Zl
outer
f
T
inner \\\\\\\‘
z, —]
U S > Z

Figure 4-4 - Integration Limits
it is apparent that the boundary integrals vanish indentically in
equation (4.13), giving.[oeedA =0, R
In a similar fashion, one can show that Mi = (.

For example,

—J];T drdz
Tz

where the second term has been integrated by parts. As before,

o = 0 on the boundary, and T = 0 at z, and z,. Thus we have
rr rz 1 2

M = —J].rT drdz (4-14)
r Tz
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Using equation (4.12b) for Trz’ we have

[ 3T, 30,
- Jprrrzdrdz = ] rir or + r 5 2 drdz
Touter
z
=fzr20 Il dr +I ]’.'2'1'
2z, rz

1

dz

r,
inner

-—J]Zr T drdz
rz

where an integration by parts has been done. Transposing terms and
using the boundary conditiomns on Ozz and Trz gives

J];T drdz = 0
rz

+>
and from equation (4.14), we have M = 0.
-3
From the final integral, for Mz, we have.[[oeer drdz = ﬁé %0

which will be applied loading term. The method in which ﬁ% is

determined is discussed in the next section.

Iv.1.1.1.3 Loading in Axisymmetric Model

In applying loads to the axisymmetric finite element model, it
is necessary to consider what specific load-deformation information is
desired. As a first approach to the problem, one would like to know
the relationship between the secondary fold radius, RS and the primary
fold radius, Rp' To generate this relationship, RS can be increment-
ally changed and the corresponding value or Rp can be calculated.

The method in which RS will be varied and RP determined is outlined
in the following paragraphs.

Consider a ring-shaped axisymmetric finite element that has

some initial curvature and a corresponding initial strain (see Fig. 4-5).
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Note that a is the inside radius
of curvature, and p is measured
from the inner surface. The
length of any fiber in the initial

state is given by

ds, = (a + p)de (4.15)

~N
Figure 4-5 ~ Initially Curved

Finite Element

Now we want to change the radius of curvature to a new value,
call it R. After this change, the element will still be axisymmetric
(i.e., constant curvature in the © - direction) but it will have a
new curvature (see Fig. 4-6).

In going from the initial state
(figure 4-5) to the final state Fig.
(4-6) , incremental displacements Au
and Av are involved. These
incremental displacements contain

rigid body motions which can be

determined by fixing some element
Figure 4-6 -~ Finite Element After reference point before and after
Change in Curvature the deformation. One choice of

a reference point is to make the center of curvature coincide before
and after the deformation. This choice involves large rigid-body
motions and is undesirable.

A more convenient reference choice is to fix point A (Fig. 4~5 and 4-6)
and allow the center of curvature to move. The distortion of the
element is most easily visualized as the combination of two separate
motions. First, the element is deformed as shown in Figure 4-7. This
deformation is taken such that the length of arc of the inmer surface

remains constant; in other words, the inner arc length is
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;= ado = Rd§ (4.16)

The displacements associated

with this deformation are of the form

Au = K(1 - cos®)
Av = Cr© + K sin®

Where the K terms are rigid body

motion and CrO represents a uniform

circumferential strain. Note for
Figure 4-7 - First Part of this first deformation,
the Deformation ds = (R + p)dg.

Now a second deformation is allowed, namely a uniform radial

contraction of Au(see Fig. 4-8).

Figure 4~8 - Second Part of the Deformation -

Uniform Radial Contraction
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With these two deformations combined, the length of a fiber is
given by
ds = (R + p + Au)df (4.17)

after the deformation. Thus the incremental circumferential strain

can be computed as

ds - ds,

- i R+ o + Aw)dP - (a + p)de
heg = ds, (a +p)do (4.18)
From equation (4.16) we have g%-= %-which can be substituted into

Equation (4.18) to yield

:-)
P\R a Au

6~ (L+o/a)T RA + p/a)

Ae (4.19)

Aee = (Aee)l + (Aae)2

In going from the initial state (with radius of curvature a) to
the final state (with radius R) the strain increment (Aae)l will be
specified completely. That is, a, R, and p(r,z) will all be specified
input items that are known. The only unknown will be Au(r,z), and that
will be determined by the finite element method.

Once Au(r,z) is known, Aee can be computed and then the stress
increment, Aoee, can be calculated from the stress-strain relations.

Finally, it is possible to determine the corresponding moment increment,

>
AMZ —Jf Aceerdrdz

Thus it appears possible to generate a plot of ﬁz VS. %’(moment

Aﬁz, from the integral

vs. curvature) for the double-fold problem. In addition, the total
displacements u and w can be used to give the primary radius of curva-

ture, R at each value of‘%. In this manner, the desired result of

i vs R will be obtained.
R )

by
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1V.1.2. Alternate Axisymmetric Finite Element Formulation

In this section, an alternate formulation is presented in which no
simplifying assumption concerning the hoop strain distribution is made.
Results using this element can then be compared with those using the
element of the previous section in order to estimate the magnitude of the

errors introduced by the assumptions of Section IV.1.1.
Figure 4-9 shows the coordinate system for the six nodal circle tri-

angular torus element. The displacements are taken as

2
z

AL +Ar+Az+ A

1 2 3 4r2‘+ Arz + A

u(r,z) 6

Ly (4
rz + A .rz + A z2

w(r,z) = A, + A r+Az+ A 11 12

7 8 9 10
If Eq. (4.20) 1is evaluated for both u and w at the six nodal points, the

result can be written as
u | .
Sl | ImL 10Ty,
: {Wi} [[omm] thi 4

fv b= paigal @

or

——— - N l
Wi$ {ul U, U3 U, Ug U LWy W) Wo W W WG}
(4

T
a7 ={a a8, A0 A | A ag a5 A0 A AL

and uy and w, are the displacements of node i.

Inverting Eq. (4.21b) gives

-11
n] 4001 {)u, -1
{”:[10} ;[ml"l]{’élf'}= b v “
1

4-21
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where
42 [m)1 =

o

4A23(2A23—A) 4A31(2A31-A) 4A12(2A12-A) 16A23A31 16A31A12 l6A23A12

2b1(4A23-A) 2b2(4A31—A) 2b3(4A12—A) 8(A31b1+A23b2) 8(A12b2+A31b3) 8(A12bl+A23b3)

2al(4A23—A) 2a2(4A31—A) 2a3(4A12—A) 8(A3131+A23a2) 8(A12a2+A31a3) 8(A12al+A23a3)

2 2 2 (4.22b)
2b1 2b2 2a3 4b1b2 4b2b3 4blb3
4blal 4b2a2 4b3a3 4(b2a1+b1a2) 4(b3a2+b2a3 4(b3al+bla3)
2 2 2
2a1 2a2 Za3 4a1a2 4a2a3 4ala3
— pu——
and
2419771297192 24937T9Z37T 32y 2A31=T3%1 T 73
by=2,-24 b)=23-2) b3=z,-2,
— — o (4.22¢)
a,=ry-r, a,=r,-T, a,=r,~1ry
2A = 2A12 + ZA23 + 2A31 = azbl - alb2
In the above expressions, T, and z; are the coordinates of node i, and
A is the cross sectional area of the torus.
The linear strain-displacement equations for axisymmetric analysis are
- au = W
r T hr Y
= 4 . 8, 9w (4.23
ee T Yrz 3z + ar )
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Computing the strains by using Eq. (4.20) in Eq. (4.23) yields

. | N
e 0102rz0; 0000 00
! .
e, 0000 00| 0010 r 22
= 21 {a} (4.24a)
e 112 2% ) 0000 00
e r T T,
Y 0010 r2z! 0102rz0
rz |
* b ' el
or {e(r,2)} = [N(r,z)}{A} (4.24b)

For an elastic isotropic material, the stress-strain-relations are

- ' s
o - (I-p) u u 0 Jie
o, . o (1-u) ow 0 e, | (4.252)
op |~ @HO@20 | v ow @) 0 | fe,
' 1
®rz 0 0 0 (5““{J Yr2
or symbolically
{c(r,z)} = [E]{e(r,z)} (4.25b)

Where E is Young's Modulus and U is Poisson's Ratio..

The stiffness matrix can be derived from potential energy to give

k] = (a1 HTxipg ™ (4.26)

and
K] =f [N(::,Z)]T[E][N(r,Z)]rdrdzde (4.27)
vol. .

can be considered as the elemental ‘stiffness matrix in {A} coordinates,
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After carrying out the matrix multiplication indicated in Eq. (4.27)
several integrations must be performed. These integrals are listed below

for completeness.

- 1 -
A = Jdrdz = 2 (rlz2 r,z + 1,2, - T + raz, - rlz3)

1 2%3 3%2

>
[
fl
~~
ou
~
Q.
N
[i]

A
3 (r1 + r, + r3)

2 2 2
+ Ty + T, + r,Tq + r2r3)

>
(9]
0
o
N
[ 9
~
o
N
il
l» o
7~~~
(2]
H
+
o]
N

(2r.z, + vz, + r,z, + r,z, + 2r. 2z

>
[V}
1]
H
N
Q.
[a]
(o 9Y
N
[l

12 171 271 371 172 272
+r 3 2 + rlz3 + r2 3 + 2r3z3
_ _A , 3 2 2 2 2
kg =J/.r drdz = O(rl + T, + I Ty + I, + Ty g (4.28)
3 2 2 3
+ rlrzr3 + r2 + r2r3 + r2 r3 + r3 )
2 A = 2 2 2
Ay —./ﬂr zdrdz = 35 (3rl 2+ 12 Ttz 4+ 2rraz, 4+ 21Tz
+ . r,z, + 2r.r,z, + T 2z 4+ r,r.z, + 3r 2z +r 2z
2°371 1272 172 1372 2 72 3 72
+ 2r, vz, + 2r,r.z, + T 2z +r.r,z, + 2r,.r.z, + T 2 + 3r z
27372 17373 1 °3 17273 27373

2 373

The quantities 1}, =/zdrdz, )\4 =fzzdrdz, Ag =frzzdrdz, and

Ag = J/QZBdrdz can be derived from the corresponding expressions in Eq. (4.28)

by substituting z for r, and z, for r,.

By defining the following variables, the remaining integrations can be

carried out,

2A

o

e = - 12 s = - 3
1 a3 1 a3
. 2A23 .o El -
-7 >y .2
2 a; 2 a; ( )
- 2A31 .. EZ
3 a, 3 a,
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where Eqs. (4.22c¢) gives the a;, bi’ and Aﬁ. Note that when r, =T, for

either 1 =3, j=2,0ori=1, j=3,o0oris= 2, j =1, some of the quantities

in Eqs. (4.29) become indeterminant. From physical reasoning, the terms can

= 0, then ¢, = s, = 0. The

be set to zero. For example, when a;=r 1= 0, 1 1

2"1'

integrals are

=11
AlO -fr drdz

[
1
e
I}
FL
=)
H|H
L)
+
/2]
’.—l
34
W
Lol

A1 f drdz=-[—é— lln Z c1b3 Z 13(r +r)]
-[%‘—czzln%- czbl % S b (r +r )—
- [32‘- c321n % - c3b2 % S b (r + r )ﬂ

Ao = -z—rz— drdz = - [% c131n % - c12b3 - E clslb (rl + rz)]
- oy () g, 4 rzz)] RN LTy %cgh‘g

1 1
- [—jc3ln;-;~c3b2--é- 33b2(r +r)

1 2 2 2 2 1
- g 83 0y(rg +r1r3+r3)]+°2b1+2 ¢y 8y by (T 14)
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1 4, 2 3,3 2 2, 2 : 2
% ©1 1n-;1v+ b3 [cl + s (r +r ) + = 3 8, (r2 + r,ry + r; )
13 2 2 1 4, T3
+ 96 51 (rl + rz)(rl. + T, )i - 7 G In —;~
3 3 2 1 2 2 2
+ b1 [c2 + % S sz(r3 + r2) + 3 ¢85, (r3 + r,r, + r, )
1 3 A 2 2 1 4 %1
+ 16 52 (r2 + r3)(r2 + T, ) ] -7 C3 In ;
3 3 2 1 2 2
+ b2 [c3 +-Z ey 53(r1 + r3) + T €453 (r1 + T Ty + ry )
1 3 2 2
+ 1% 3 (rl + r3)(r1 + 1y )]
fz" 1, 5. T 5 Ty 5 Ty
Mg = —;drdz = - g{cl 1n ——+c, 1n ==+ cy 1n = )
1 2 3
4 4
+ (c1 3 + ¢,y b + ¢ bZ)

3 2, 2 2 3 2 2 2 3 2 2 2
[cl sy (r2 - ) 4+ c,78, (r3 - T, ) + ¢y sS4 (rl - T, ﬂ

[ 3
B ':23" 12313(r23 B r13) * C22523(r33 ) * °32 33(r1 B r33)]
1 [ 4 4 4. 4 4, 4 4
"% 11(r - ) tes, (g -1 )+°33(r1’r3)]
1[ 5, 5 5 5.5 5 5 5 5
~ 3% le (r2 -1 ) + 32 (r3 - T, ) + S, (rl - r3 )] (4.30)

In a similar manner, the load vector consistent with Eq. (4.26)
e.g. for a constant normal pressure, can be derived. Letting Pi be the
pressure normal to the side opposite corner node i (positive in compression),

the components of the force vector {F} become
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2nr

1
F, = (P2b2+P3b3)
21z,
Fy = —— (Byby + P3by)
211'1‘3
Fy = —g— (Byby + Pyby)
F, =2 (r. +1.)Pb
4= 73 YT 27 373 (4.31)
F. =21 (¢ +1.)P.b
5 =3 {5t r3) F1Py

A
Fo= 20 (r2 + r3) szz

Components 7 through 12 of {F} can be derived from components 1 through 6,

respectively, by replacing the bi by a;.

IV.1.3 Comparison of Formulations

In this section, numerical results from the two formulations of

Section IV.1.1 (Linear and Quadratic Hoop Strains) and the formulation
of IV.1.2 are compared.

The example problems were all thick cylinders loaded by an internal
pressure. The number of elements used to represent a cross section of
the cylinder was varied from 24 elements, 12 elements, and 6 elements.
The layout of the elements is shown in Figure 4-10. Nodes 1, 2, and 3
lie on the inner surface, and their displacements (which should be identical)
can be used as a measure of accuracy. Table 4-1 shows some typical results
of this study. Note that for course meshes, the variation of displacements
at nodes 1, 2, and 3 is considerable, and the average displacement is also
slightly in error. Note also that the quadratic hoop strain assumption

did not improve the accuracy of the solution as expected.
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Cylinder

r = .16"
r = .25"
Constrained '
from moving P = 365 PSI
in the z Internal Pressure
direction. -
E = 20,000,000 PSI M= .49
Figure 4~-10 - Cylinder Problem - 6 Element Mesh
Table 4-1 -~ Example Problem
Model Linear Hbop Strain Element (IV.1.1) Quadratic Hoop Strain Element

(1Iv.1.1)

Number Radial Displ. (in.) x 10“6

of
Elements Node 1 Node 2 Node 3 Ave.

24 7.4170 7.4270 7.4229 7.4223
12 7.3809 7.4204 7.4047 7.4020
6

Closed

Form 7.429

Solution

Radial Displ., (in.) x 10~

6

Node 1 Node 2 Node 3 Ave.

7.4168

7.3807

7.3413

7.4268

7.4202

7.3900

7.4227

7.4045

7.2446

7.4221
7.4018

7.3253

7.429

Alternate Formulation (IV.1.2)
6 7.4287 7.4293 7.4209 7.4263

8 7.4294 7.4297 7.4257 7.4283
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Due to the simplicity of the linear hoop strain derivation, this
formulation will be used for all bladder folding studies. Errors intro-
duced by this formulation are not significant, as can be seen from
Table 4-1.

4-30



IV.1.3 Axisymmetric Finite Element-Numerical Examples

In order to check-out the coding for the axisymmetric finite element
program, a variety of example problems were considered during the course
of the contract. These problems exhibited a wide range of nonlinear be-
havior, including plastic response, large deflections, large strains, and
a combination of material and geometric nonlinearities. An example double

fold was also simulated.

IV.1.3.1 Elasto-Plastic Cylinder

To verify the theory presented herein for problems in which the non-
linear behavior is due to plasticity, a long cylinder subjected to internal
pressure was considered. This example was used by Ref. 49 in a finite

element solution. The cylinder had the following characteristics:

Inner Radius a=1.0"
Outer Radius b =2.0"
Elastic Modulus E = 10,000 ksi
Poisson's Ratio v =0.3
Yield Stress in Tension Uy = 20 ksi

=0

Post Yield Modulus Ep

where cy is the uniaxial yield stress.

A slice between two z = constant planes was modeled with 24 of the
new axisymmetric finite elements. The condition of zero strain in the
axial direction was satisfied by constraining boundary nodes from moving
in that direction. A total internal pressure load of 15 ksi was applied
in 5 equal increments, with the corrective iteration mentioned above

applied after each step.

Some typical results are shown in Figures 4-11la and 4-11b. Figure
4-11a is a load-deflection curve, and it shows the nonlinear nature of the
problem. The solid line is from Ref. 55 for the Von Mises yield criterion,
the Prandtl-Reuss flow law, zero axial strain, and elastic and plastic
compressibility (Curve A of Ref. 55). The finite element solution simulates
all these conditions, and is shown in Figures 4-11 as solid dots. Figure

4-11b gives the radial stress distribution through the thickness of the
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Pressure, KSI

] ] | ' - u(r=b)
001 .002 .003

Figure 4~1la - Radial Deflection at r=b vs, Load
O KSI
L
- T
Figure 4-11p — Radial Stress vs. Radius at a Load of 15 KSI
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cylinder for a load of 15 ksi. Both of these figures show excellent agree-
ment between the solution of Ref. 55 and the finite element theory presented

herein.

IV.1.3.2 Large Deflection Circular Plate

A circular plate h = .5" thick and having a radius a = 10" was used
to investigate the application of the new element and theory to large
deflection-moderate strain problems. Only elastic behavior was allowed,

with

=
it

30,000 ksi
= 0.3.

=
[

Thirty-two axisymmetric elements were employed to model the simple-supported
plate. A total uniform pressure of q = 1.25 ksi was applied in 10 equal

increments, with corrective cycling after each load step.

Figure 4-12 shows a load versus center-line deflection curve for this
problem, with the solid lines from Ref. 31, and the dots from the finite
element solution. The straight line represents the linear small deflec-
tion solution, while the curved line is for the large deflection solution.
As can be seen from this figure, the finite element results closely follow

the "exact" solution of Ref. 31.

IV.1.3.3 Large Strain Sheet Bending

Hill (Ref. 30) presents a problem, under the general theory of sheet
bending, which can be used to check the capability of the theory and ele-
ment presented herein to analyze situations in which large plastic strains
occur. The problem is that of plastic bending of a wide sheet into a

cylindrical surface by couples applied along opposite edges.

By assuming that (1) plane sections remain plane during bending, (2)
elastic deformation can be neglected, (3) the material is perfectly plastic,
and (4) the Tresca yield criterion holds, Section III.1l gives a closed-
form expression for the plastic hoop strain in the sheet as a function of
folding radius of curvature. This same problem was solved by the finite

element procedure by modeling the sheet with 24 elements through its
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0.8 / =

06 ydrd

DEFLECTION, W/h

04 7

Figure 4-12 - Load Versus Deflection for Circular Plate

its thickness. The finite element model was '"loaded" by specifying the
change in the radius of curvature. An arbitrarily large inner radius of
100" was used to start the computations. This radius was then decreased
until yielding first occurred in the sheet. The sheet was then 'loaded"
further by reducing the radius from its value at first yield to essentially

zero in nine equal increments. The physical constants for the problem

were
E = 10,000 ksi
u = 0.33
g = 6 ksi
y
E =0
P

t (sheet thickness) = 0.02"

4-34



The plastic hoop strains computed at the inner radius of the sheet
by both methods are shown in Table 4~2. Considering the various differences
between the finite element solution and the analytical solution, the results
agree very well over a wide range of radii of curvature. Note that strains

on the order of 157 developed during the solution.

Table 4-2 - Plastic Hoop Strains Computed for Various Inner Radii

Inner Radius Percent Plastic Hoop Strain
(inches) Finite Element Closed Form
13.38 0.0 .0
(radius to first yield)
11.90 -0.00944 -0.00929
10.42 -0.0217 -0.0212
8.94 -0.0380 -0.0371
7.46 ~-0.0608 -0.0593
5.98 -0.0945 -0.0924
4.50 ~0.1498 -0.1473
3.02 -0.2586 -0.2559
1.54 -0.5757 -0.5725
0.0587 -13.910 -15,66

Note that the axisymmetric solution to the single folding problem given
above yields results closer to those of the analytical model of Section
ITI.1 than does the plane strain solution of Section III.5.10.2. This is
due to the fact that the axisymmetric model simulated the analytical solu~-
tion better than the plane strain model in that plane sections remain
plane in the axisymmetric model, whereas planes are distorted in the solu-~
tion of Section II1.5.10.2. The very close agreement between the analyti-
cal solution and the numerical solution shown in Table 4~2 give added

confidence in both approaches.

IV.1.3.4 Torus Problem

In order to check out the capability of the axisymmetric finite element
program to simulate double folds, a simple torus problem was considered.

The torus had a major radius Rs’ a minor radius Rp’ and a wall thickness
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of t. The torus was loaded by couples applied to its section, as shown

in Figure 4-13a.

The torus problem was considered by Reissner (Ref. 58) for the case in
which the response is elastic, and (RP/RS) << 1. Table 4-3 tabulates the
moment M for various changes in RS for the case in which E = 16,000 KSI,
uw=.3, R = 100" (initially), Rp = 10" (initially), and t = 1".

Table 4-3

Moment vs. Radius

RS (inches) M (K-in.) M (K-in.)
100 (Reissner) (Finite Element)
99 1941 2056
98 3961 4115
97 6003 6177
96 8088 8241
95 10216 10307
94 12389 12374
93 14610 14442
92 16878 16511
91 19197 18579
90 21567 20647

Note that Reissner's solution predicts that the cross-section of the
torus deforms as shown by the dotted lines in Fig. 4-13b. Thus the double
fold problem is very similar to the torus problem, in which Rp is the first
fold (primary) radius, and R, ig the second fold (secondary) radius. The
flattening of the torus is also similar to the way a double fold would
deform as RS is decreased. However, for a true double fold, the cross

section would not necessarily be symmetric about B~B (Fig. 4-13b).

One-half of the torus cross-section was modeled with 72 triangular
finite elements (only half was considered due to the symmetry about B-B).
The boundaries of the model were constrained to slide along B-B. The
finite element mesh involved 370 degrees-of-freedom. The model was 'loaded"
by specifying ARS, and the moment M to cause this radius change was computed

by integrating the stresses over the cross section. In this solution, Rs
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was reduced from 100" to 90" in 10 equal steps, and strains and the total
moment M were computed at each step. Table 4-3 shows the finite element
results for M at each Rs value considered. Very good agreement was obtained
between the analytical results and the finite element solution, as can be
seen from Table 4-3. The cross—section flattened in the finite element

solution approximately ome inch.

IV.1.3.5 Double Fold Model

To demonstrate how the torus of the above section can be used to sim-
ulate a double fold, this same model was loaded by changing the secondary
radius from 100" to 10". Two cases were considered: (a) torus completely

elastic, and (b) torus elasto-plastic with x = 0.008 and ay = 74 KSI.

The moment-curvature curve for the elastic solution is shown in
Fig. 4-14. 1t reaches a maximum at a secondary radius of 20" and corres-
ponding moment of 302,602 in-k. This type of behavior indicates that some
kind of structural instability, such as buckling, has occurred. The final
shape of the torus cross—seétion is shown in Figure 4-15, in whick the
secondary radius is about 10". Note that the original semi-circular

section has been flattened out considerable, simulating the behavior of a
double fold.

In Fig. 4-16 is shown the moment vs. curvature relation computed for
the elasto-plastic torus. Note that this curve peaks at a moment of
14,000 of secondary radii of 80" to 40". Thus the instability occurred
at a much lower moment and smaller curvature, due to the ability of the
torus material to go plastic. The final cross-sectional shape for this

problem was similar to that of the elastic problem, Fig. 4-15.

These results show that the axisymmetric finite element model proposed

herein is capable of simulating the behavior of a double fold.
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IV.1.3.6 TFinal Double Fold Model

The finite element analysis for stresses and strains in a double fold
follows from the torus problem presented above. For the static double fold
analysis, the same information as needed for the single fold must be input
by the user. (See Section III.5.10.4) 1In addition, unless otherwise en-

tered, the program will choose the nominal values Rp = 10t, where

Rp = Primary Folding Radius
RS = Secondary Folding Radius
t = Total Bladder Thickness.

Each layer will consist of axisymmetric finite element arrays as shown in

Figure 4-17. The model will be loaded by incrementally decreasing RS to a

Layer Thickness

Axis of Symmetry

Figure 4-17- Finite Element Layer: Double Fold

final value of Rf, to be input by the user. At each load ihcrement, the
maximum equivalent plastic strain will be computed and used in fatigue

life predictions as outlined for the single fold.
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1v.2 Double Fold Tests: Task 3.2

IV.2.1 Casting a Double Fold

Some simple qualitative experiments were performed in order to gain
some insight into the nature of the double fold. These experiments con-
sisted of casting a doubly folded sheet of 1/8" thick polyethylene or
teflon in epoxy potting resin. After curing, the resulting specimen was
cut in order to expose the inside primary radius of the double fold. 1In
some specimens, the doubly folded sheet was coated with a mold release
compound. Then the sheet was cut away from the epoxy and the epoxy cast-
ing, showing the curvatures inside the double fold, was saved. In all
such samples, the inside primary radius was driven down to nearly zero.

Photographs of some of the examples are shown below.

Figure 4-18 - Cast Double fold

Figure 4-18 shows a polyethylene sheet which was etched before cast-
ing in order to make the sheet adhere to the epoxy casting resin. The
inside (primary) radius was exposed by slicing the casting in the region
where the outside (secondary) radius was very small. As can be seen in

the photograph, the inside radius is essentially zero.

4-43



Figure 4-19 - Casting of Inside of Double Fold

Figure 4-19 shows the solid epoxy casting of the inside portion
of the double fold. A teflon sheet coated with mold release was used to
obtain this casting. The sheet was cut away after the epoxy had cured,
revealing the inside radius. This radius was so small that the casting

resin did not flow into this region, as can be seen in Figure 4-19.
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IV.2.2 Double Fold Fatigue Tester

A device for repeatedly folding and unfolding a double fold was de-
signed by Mr. J. P. 0'Neill. However, the device was never actually
constructed.. In this section, some of the details of the double folder
are presented, in case future studies indicate a renewed interest in ob-

taining fatigue life of double folds by test.

The sequence of forming a double fold, if it is to be repeatable at

the same torture point on the sheet, is as follows:

a. Form a single fold and hold the center point of the two edges
in a repeatable juxtaposition (or close separation to allow for

clamping fixtures);

b. A blade is extended along the line of the inside of the double
fold but should be kept away from the sharp double fold torture

point;
®

c. Bend the single fold around the blade by means of hinged plates
that rotate until parallel with each other and separated by

various amounts greater than 4t.

Although the minimum spacing for parallel jaws compressing a double fold
is 4t, this compression is probably more severe than that encountered in
expulsion systems. Also, it is noted that the strain at a double fold

increases rapidly on starting the second fold, and increasing amounts of
compression thereafter does not significantly change the maximum strain.
Compression to about 8t is expected to be sufficient, as this will allow

the blade to remain inéide the fold.

The double fold, low cycle fatigue machine requires a structure as
shown in Figures 4-20 and 4-21, and requires power for a sequence of

operations.
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IV.3 TASK 3.3: Compare Theory and Experiments

The simple experiments described in Sections IV.0 and 1IV.2.2 did
point out some weaknesses in the analytical approach to the double fold.
The f&rmation of a single fold is characterized by a relatively smooth
load~deflection behavior. However, the second fold of the double fold
exhibits a buckling behavior as the bending load is increased. TFurther-
more, this buckling is not axisymmetric in nature, and would not, there-
fore, be detected by the axisymmetric finite element model. Given
sufficient time, the axisymmetric model could be modified by expanding all
unknowns in a power series in §, adding greatly to the complexity and
magnitude of the analysis. Since such an analytical effort was beyond the
scope of this project, and since the double fold model of Section IV.1l.3.5
is capable of simulating very small inner radii accurately, the double

fold analysis as presented in Section IV.1.3.5 will be used herein.
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IV.4 TASK 3.4: Traveling Double Fold

The rolling double fold represents the most severe situation analyzed
in this project. The analysis is quasi-static in nature, that is, the fold
is formed and rolled slowly so that inertia effects need not be included
in the analysis. The complete double fold is formed first using the
axisymmetric finite element model and reducing the secondary fold radius
to a small value. The computer program then interrupted and the resulting
information is stored on tape or disk. The double fold is then "rolled"

by moving one free edge relative to the other, as shown in Fig. 3-27.

The following finite element double fold model was selected to inves-
tigate the feasibility of a rolling double fold analysis. One layer of
finite elements were arranged as shown in Fig. 4-17, and a total of twenty-
four elements were used. The model thus had one hundred fifth degrees-of-

freedom. Other input quantities were:

R = 0.2"
P
RS = 1.0" (initially)
R, = 0.1" (final)
t = 0.02"
E = 200 KSI
E = 33 KSI
P
o = 10 KSI
Y -
Moo= 0.9159 (for fatigue life)
Z = 0.5147
g = 0.33

The model was loaded by changing the secondary radius from 1.0" to 0.117"
(close to the 0.1" desired) in twenty steps. At this time, the maximum
equivalent plastic strain was 87.397, giving a fatigue life of only omne
cycle! At this point, a data dump was taken, and this information was
stored on disc. The program was next restarted, and a total load of 20

KSI was applied to the outer edge, in the negative Z direction, in ten equal
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increments. After this '"rolling' simulation, the maximum equivalent plastic
strain has risen to 93.5%. Thus a considerable increase in straining was
achieved by rolling the double fold. The cross-sectional shapes after
twenty load steps and thirty steps are shown in Fig. 4-22. This problem

consumed slightly over three minutes of CLC 6500 computer time.

The above example demonstrates that the computer program developed
during the course of this investigation is capable of modeling rolling
double folds. This is a very difficult mathematical problem, due to the
following types of nonlinearities: 1large deflections and strains; plasti-

city; loading; boundary conditions.
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(b) Rolled Double Fold (30 steps)
Figure 4-22: Rolling Double Fold
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IV.5 TASK 3.5: Fatigue Life of Double Folds

A number of different double fold geometries were considered in
order to identify that configuration which best simulated the double fold
behavior. The desirable behavior is that the largest plastic strains
should occur at the region near the center of the fold. However, if the
ratio Rs/t was selected as being large (100, e.g.) then the inner and
outer sections of the model away from the sharp crease were highest
strained, since these surfaces were furthermost from the neutral surface.
Also, the flattening pressure, Pv of Fig. 4-1, did not develop due to the
large value of Rs. Likewise, a small Rp/t ratio (1, e.g.) did not
simulate the geometry accurately. The best model developed was one in

which RS/t = 50 and Rp/t = 10.

In order to illustrate the use of the analysis to predict plastic
strains in double folds, two example problems were solved. One model was
constructed of teflonm, with'fatigue properties given in Table 3-5, and
for which E = 7 XKSI, u = 0.35, Ep = 0, and oy = 2 KSI. The bladder
thickness was taken as t = 0.02", and the model was loaded by changing
the secondary radius of curvature/thickness ratio from 50 to 6.1 in
twenty steps. At this point, an equivalent plastic strain of only 18.897%
had developed, giving a very large fatigue life. The computer analysis

consumed 143 seconds.

The second example was an aluminum bladder having the same geometry
as the above example, but with E = 200 KSI, u = 0.33, Ep = 33 KSI,
oy = 10 KSI. The fatigue data is given in Table 3-5. Loading changed
Rs/t from 50 to 5.9 in 20 steps. The maximum equivalent plastic strain
was 87.397, giving a fatigue life of only one cycle. The run took 142

seconds.

The two examples presented above exhibited widely different behavior,
in that one failed in the first cycle (aluminum), whereas the teflon
bladder essentially did not fail. Composite bladders could likewise be
investigated in order to maximize fatigue life while satisfying other

system constraints.

It should be noted herein that the iterative correction does not

work efficiently for the double fold analysis. For this reason, small
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step sizes should be taken to preserve solution accuracy. In the above
examples, twenty equal steps were taken to change the secondary radius

from R = 1.0" to R = 0.1",
s s
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V.0 CONCLUSIONS, RECOMMENDATIONS AND REFERENCES

A computer program has been prepared which will predict plastic
folding strains in single and double folds of laminated expulsion bladders.
From these strains and uniaxial fatigue data, the expected fatigue life
of such bladders can be computed. The strains are calculated using a
finite element model (plane strain for single fold and axisymmetric for
double fold) which employs a six nodal point triangular element as the
basic building block. In addition, a time-share computer program has
been coded which performs a simplified strain analysis of single folds.
Fatigue information on bladder materials has been compiled for use with
the strain analysis. Finally, experiments have been used to verify the

predictions of the programs and also to guide the analysis.

Future work to update the finite element code would include the
following: allow the sides of the elements to curve as discussed in
Section III.5.8.3; include higher order terms in the basic incremental
variational principle, Section III.5.2; introduce cos nf variation into
the axisymmetric finite element model of the double fold, Section IV.1;
obtain a more representative constitutive law for large plastic strains;
include a Ramsberg-Osgood type stress-strain approximation as well as the
bi-linear approximation; include higher order terms in the stress trans-
formation of Section III.5.2; devise an efficient equilibrium check and

iteration for the double fold model.
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